next up previous
Next: Multistep or Predictor-Corrector methods Up: Ordinary differential equations: a Previous: Exercise 1.1: Newton's law

Higher order: Taylor's series

We can go a step beyond Euler's method keeping up to second order terms in the expansion around $x_0$. Doing so we obtain
\begin{displaymath}
y(x+\Delta x)=y(x)+y'(x)\Delta x+\frac{1}{2}y''(x)(\Delta x)^2+O(\Delta
x^3)
\end{displaymath} (5)

from (1) we get
    $\displaystyle y'(x)=f(x,y),$ (6)
    $\displaystyle y''(x)=\frac{df}{dx}=\frac{\partial f}{\partial x}+\frac{\partial...
...l y}\frac{dy}{dx}=\frac{\partial f}{\partial
x}+\frac{\partial f}{\partial y} f$ (7)

Substituting in (5) we obtain


\begin{displaymath}
y_{n+1}=y_n+f\Delta x+\frac{1}{2}(\Delta x)^2[\frac{\partial
f}{\partial x}+f\frac{\partial f}{\partial y}]+O(\Delta x^3),
\end{displaymath} (8)

where all the functions and derivatives are evaluated in $(x_n,y_n)$.



Adrian E. Feiguin 2004-06-01