Optimization of pharmaceutical properties of a lead compound targeting human African trypanosomiasis by nanoformulations

Jennifer L. Woodring1, Catherine Sullenberger2, Amit Singh1, Mansoor Amiji3, Kojo Mensa-Wilmot4, Michael P. Pollastri1.

1Northeastern University, Department of Chemistry and Chemical Biology, Boston, MA, 02115. 2University of Georgia, Department of Cellular Biology, Athens, GA, 30602. 3Northeastern University, Department of Pharmaceutical Sciences, Boston, MA, 02115.

Abstract

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. HAT is present in 36 countries in sub-Saharan Africa, has 70 million people at risk, and causes 10,000 new cases each year. Current drug therapies need improvement in efficacy, reduced toxicity, and bioavailability. As a result, new research is being conducted in the pursuit of small molecule chemotherapeutics that target HAT.

Using a drug target repurposing approach, we discovered that lapatinib, a human epidermal growth factor receptor (EGFR) inhibitor, exhibited modest potency with an EC50 of 1.54 micromolar against T. brucei. Through structure-activity relationship (SAR) studies, a lead compound, NEU-617, was synthesized and shown to have an EC50 of 42 nM as well as excellent selectivity over human cells. Despite these promising results, NEU-617 has poor physiochemical properties for targeting the blood-brain barrier (BBB): high molecular weight (541), high lipophilicity (clogP = 7.1) and high binding to plasma proteins (>99%). Indeed, we do not see significant levels of the drug in the central nervous system, which is critical for HAT therapeutics.

Nanoformulations have been shown to avoid first pass metabolism, generating prolonged exposures to a drug. Also, nanoformulations rich in fatty acids can aid in BBB penetration. We describe here our ongoing studies of applying nanoformulation technology to NEU-617 to improve its applicability as a potential HAT therapeutic.

Background

Human African trypanosomiasis (HAT)
• 60 million people at risk, affects 36 countries in sub-Saharan Africa
• 100% fatal if not treated
• Two Trypanosoma brucei subspecies: T.b. gambiense and T.b. rhodesiense

Current medicine for HAT:
• Only 4 drugs, half of which do not cross into the blood-brain barrier (Stage 2)
• Sub-optimal: toxic, show resistance, and not orally bioavailable
• Cyclodextrin complexes encapsulating melarsoprol improved pharmaceutical properties

Future directions

This study shows that NEU-617 can be encapsulated in nanoemulsions and screened for growth inhibition against the Trypanosoma brucei parasite. Further studies are needed to determine if other nanoparticles like liposomes or polymer based nanoparticles like polyactic-co-glycolic acid (PLGA), or poly(epsilon-caprolactone) (PCL) show the same inhibition profiles. Also, encapsulation of the commercial drug lapatinib may show improved encapsulation efficiencies and inhibition over NEU-617.

References and acknowledgments


This work was supported by IGERT Nanomedicine Science and Technology Award NSF-DGE-0965843, NIH Award grant R01AI082877, as well as Northeastern University. Thank you to Bill Fowle for TEM training.