The role of electronic properties of Pt and Pt alloys for enhanced reformate electro-oxidation in polymer electrolyte membrane fuel cells

Seyyed Mohsen Mousavi Ehteshami a, Qingying Jia b, A. Halder b, S.H. Chan a, S. Mukerjee b,∗

a School of Mechanical and Aerospace Engineering, Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
b Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States

A R T I C L E I N F O

Article history:
Received 9 March 2013
Received in revised form 27 May 2013
Accepted 11 June 2013
Available online 19 June 2013

Keywords:
PEM fuel cell
Reformate tolerance
Pt-based catalysts
d-Band vacancy
d-Band centre

A B S T R A C T

One major challenge of PEM fuel cells development is to overcome the activity and durability issues of the current anode materials which are susceptible to hydrogen impurities. To design stable and efficient catalysts with enhanced reformate tolerance, a comprehensive understanding of the underlying mechanisms is crucial. In this work, the CO and CO2 tolerance of a series of Pt-based catalysts are tested in a PEM fuel cell. We report that the CO tolerance is the highest for PtMo/C followed by PtCoMo/C, PtRuMo/C, PtRuPb/C, PtRu/C, PtCo/C, PtFe/C, PtNi/C and Pt/C; while the CO2 tolerance increases in the order: PtCo, PtCo>PtRu>PtRu>PtCoMo>PtRu>PtFe>Pt>PtMo. In situ XAS measurements in combination with FEFF8 calculations are performed to correlate the CO and CO2 tolerance trends with the electronic properties of these Pt-based alloy catalysts. We find that the anode overpotential in the presence of CO2 can be generally related to the experimental Pt d-band vacancy or calculated d-band center, and thus governed by the Pt electronic properties modified by the alloyed metal(s). No such correlation is observed between the anode overpotential in the presence of CO and Pt electronic properties, which highlights the key roles of Mo or Ru in improving CO tolerance via promotion and bifunctional mechanisms. Building upon these results a new ternary alloy PtCoMo/C was synthesized. This electrocatalyst shows the best reformate tolerance in low temperature PEM fuel cells by taking advantage of the bifunctional mechanism induced by Mo and the ligand effect induced by Co simultaneously. Our findings put forward a theory which gives a strong perspective for further research and development of new inexpensive catalysts with superior CO tolerance and durability.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reformate as the PEM fuel cells anode side feedstock, typically contains a mole fraction of hydrogen in the range of 0.4–0.75, with CO in the range of 50–100 ppm and CO2 making up the balance. CO is well-known as a poison for hydrogen oxidation on platinum in the anode of a PEM fuel cell and a medium temperature phosphoric acid system. Besides, CO2 has the potential of CO production through either (a) a reverse water gas shift reaction [1–5] (CO2 + H2 ↔ CO + H2O) that is the reduction of CO2 at the operating temperature of PEM fuel cells of 80 °C or (b) the electro-reduction of CO2 through CO2 + 2M-Hads ↔ M-COads + H2O + M [6–8]; The poisoning level caused by CO2 is beyond those accounted for by simple dilution [2–5]. Hence, on the way to develop new durable catalysts for impure hydrogen feedstock, the enhancement of the reformate oxidation should be considered over the whole range of industrial CO and CO2 concentrations. PtRu alloy catalyst has been widely acknowledged as one of the most promising candidates for the anode side exposed to reformate feedstock [9,10]. Although other bimetallic alloys, such as PtMo [11–13] and PtSn [14,15], have shown even better CO tolerance than PtRu alloys, their CO2 tolerance is worse [1,5,8]. Russell et al. [1] have shown that the lower CO2 tolerance of PtMo compared to PtRu is owing to the difference in the mechanisms of improved CO tolerance compared to a Pt/C reference catalyst. At PtRu the mechanism is because of the water activation which occurs at Ru sites, while at PtMo the mechanism relies on the turn-over of the Mo (IV/VI) redox couple.

Many investigations have been done to develop CO tolerant binary or ternary catalysts by adding elements such as W, Mo, Co, Ni, Sn, Ir, Pd etc. to Pt/C or PtRu/C [9,16–23]. The component