

Hiya kids! Welcome
to the world of
heat transfer.

I'm Wilhelm
Nusselt, here to
be your guide!

I couldn't help
but overhear
your dilemma.
Ever heard of
convection?

Well then it's a Shame you're sleeping through it. Convection is one of the three main modes of heat transfer. Can you name the others?

Well there's

1. Conduction

and

2. Radiation.

But those Would melt

What about radiation?

(natural)

Precisely! Now do you understand why your classroom has a fan?

But it isn't working well...

seems like convection

doesn't work...

Perfect! Then you already know that:

q" = heat flux across the Surface

h = convective heat transfer Coefficient

Ts = temperature of surface

Too = temperature of surroundings

Since our bodies are 98.6°F and Northeastern isn't installing AC units anytime soon, we can't change the temperature gradient.

q"= h (Ts-Too)

Change h?

Change the material?

Yup! But first we need to understand a few things about fluid flow.

Precisely! This leads us to a dimensionless number, the Prandtl Number. $Pr^{\frac{1}{3}} = \frac{8}{8r} = \left(\frac{V}{A}\right)^{\frac{1}{3}}$ V = momentum diffusivity A = thermal diffusivity Pr = Prandtl NumberWoah.

We're gonna need a couple of other dimensionless groups (including my own). Convection is affected by many factors, but they're summed up in the Reynolds, Prandtl, and Nusselt numbers!

* Equations for flow over a flat plate.

