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ABSTRACT 

One of the main challenges in prognostics is degradation 

modeling for which there are no straightforward methods 

compared with system governing equations modeling (e.g., 

Newton`s law, Euler`s law, thermodynamics conservation 

laws, fluid dynamics laws, and so forth). Once both 

governing equations and degradation equations are 

generated, then the RUL or EOL can be easily estimated by 

using a filtering technique like Kalman filter. This paper 

presents a new approach for generic degradation modeling 

which can be engaged in (1) complex engineering systems, 

and (2) the structures which are fabricated by the new 

manufacturing processes such as 4D printing that in both 

cases the physical knowledge is not adequate to model the 

degradation equations. In the existing approaches for 

parametric degradation modeling, there are always 

possibilities that a specific degradation phenomenon of a 

new system is ignored. This deficiency arises from the 

assumption made in the previous studies that degradation 

phenomenon is equivalently represented by degradation 

mechanism such as crack, wear, corrosion, erosion, and so 

forth. Here we relax this assumption and provide a more 

general approach for parametric degradation modeling. This 

research first, quantifies the concepts of governing 

equations and degradation equations in prognostics in a 

general view, second provides a generic approach for 

deriving the governing equations by using techniques of 

system identification, third, it digs into the concepts of 

degradation and provides a microscopic approach for 

generic degradation modeling, and finally it combines and 

incorporates the governing equations and degradation 

equations in a way that the generality is conserved. In 

addition, this paper opens the door of degradation modeling 

in 4D printing by starting from the conceptual point of view 

to the final generic methodology.  

1. INTRODUCTION 

Degradation modeling is one of the most challenging parts 

of prognostics. Degradation modeling is different from 

system dynamic (governing equations) modeling. For the 

latter, there are always some certain physical rules like 

Newton`s law, Euler`s law, Thermodynamics conservation 

laws, and so forth. However, for degradation modeling, 

there are no straightforward methods (like balancing the 

moments and forces which are done in deriving the 

governing equations) to represent a degradation model that 

governs the degradation behavior of a system. 

There are mainly two categories of approach in the literature 

of prognostics - Physics-based and Data-driven approaches. 

The latest comprehensive review works in prognostics that 

have been done by Liao and Kottig (2014) and Aizpurua 

and Catterson (2015), introduced all types of techniques in 

physics-based and data-driven approaches up to their date 

perfectly. One big issue in the most of the previous works in 

parametric degradation modeling is that always there is the 

possibility that one specific degradation phenomenon is 

ignored. This issue arises when degradation phenomena are 

equated with some well-known degradation mechanisms 

like crack, wear, corrosion, erosion, and so forth. In this 

paper, we dig into the concepts of degradation and provide a 

microscopic approach in degradation modeling to provide a 

more complete set of degradation equations that 

consequently leads to a more reliable RUL estimation. 

Finally, to illustrate the capability of this approach in 

practice, two cases including one case in traditional 

degradation modeling and one case in 4D printing are 

discussed in the section of discussion. 4D printing is a new 

and fascinating field, and the 4D printed structure has 

targeted shape-shifting through time in contrast to 3D 

printed structures (Tibbits, 2014). Degradation is one of the 

main challenges in 4D printing so that after a certain 

number of shape-shifting, the structure would not entirely 

recover its original shape and thus, it is important to have an 

understanding of the degradation and the lifespan of the 

structure (Raviv, Zhao, McKnelly, Papadopoulou, Kadambi, 
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Shi, Hirsch, Dikovsky, Zyracki, Olguin, Raskar, & Tibbits 

2014). 

Although the necessity of degradation modeling in 4D 

printing has been addressed (Tibbits, McKnelly, Olguin, 

Dikovsky, & Hirsch, 2014) and   (Raviv et al. 2014), but no 

attempt has been made further to yield an appropriate 

degradation modeling for this new area.  

The current parametric degradation modeling considering 

the well-known degradation mechanisms such as wear, 

corrosion, etc. are not suitable to model the degradation of 

the 4D printed structures. Instead, here, a more general 

approach based on a better concept, degradation 

phenomenon, is proposed to be beneficial for degradation 

modeling of 4D printed structures. 

2. QUANTIFYING THE CONCEPTS OF GOVERNING 

EQUATIONS AND DEGRADATION EQUATIONS IN 

PROGNOSTICS 

Here, we want to revisit the prognostics and degradation, 

more conceptually that creates the basis of our method. 

Assume that we have a system, and the system has P system 

equations  𝑒𝑞1, 𝑒𝑞2, … , 𝑒𝑞𝑃 . In these equations, we have N 

input variables 𝑈(𝑡), M output variables 𝑌(𝑡), and K system 

parameter variables 𝛩(𝑡). Parameters will change over time, 

but we may have some parameters that are fixed over time.  

In general, each equation of the system, 𝑒𝑞1, 𝑒𝑞2, … , 𝑒𝑞𝑃 

represents a relationship of inputs, outputs, and parameters. 

So we have: 

{
  
 

  
 
𝑒𝑞1 = 𝑒𝑞1(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡))

𝑒𝑞2 = 𝑒𝑞2(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡))
.
.
.

𝑒𝑞𝑃 = 𝑒𝑞𝑃(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡)),

 (1) 

where: 

{

𝛩(𝑡) =  [𝜃1(𝑡), 𝜃2(𝑡), … , 𝜃𝐾(𝑡)]
𝑇

𝑈(𝑡) =  [𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑁(𝑡)]
𝑇

𝑌(𝑡) =  [𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑀(𝑡)]
𝑇 .

 (2) 

Finally, some new variables are defined and are called state 

variables. State variables are just some combinations 

(relationships) of the previous variables (inputs, outputs, 

and system parameters) and their trends are monitored until 

some prescribed thresholds are violated that it leads to RUL 

or EOL estimation. So assume we have R desired state 

variables, 𝑋(𝑡) =  [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑅(𝑡)]
𝑇. 

Once the system governing equations (differential or 

algebraic) have been established to represent the system 

behavior, the parameters need to be identified. Some 

parameters are constant with time and some others 

change/evolve over time, related to certain degradation or 

gradual changes in the system. The assumption of constant 

parameters is useful in some cases when operation time is 

short (relative to lifetime) like for control purposes. 

However, for prognostics problems in which system could 

experience gradual and slow degradation, it is important to 

determine the degradation equations, which are some extra 

equations (secondary equations) that show the changes 

(drifts) in system parameters (not necessarily all parameters) 

over time. Hence assume that we have Q degradation 

equations (degradation models) in a general form of Eq. (3) 

which consists of inputs, outputs, system parameters, and 

some new parameters that we call them secondary 

parameters that are showed up in the degradation 

(secondary) equations and not in primary system equations. 

So assume that we have V secondary 

parameters,ℎ1(𝑡) …ℎ𝑉(𝑡), the degradation equations can be 

written in the following form: 

{
  
 

  
 
𝑒𝑞𝑃+1 = 𝑒𝑞𝑃+1(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡), H(𝑡))

𝑒𝑞𝑃+2 = 𝑒𝑞𝑃+2(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡), H(𝑡))
.
.
.

𝑒𝑞𝑃+𝑄 = 𝑒𝑞𝑃+𝑄(𝑈(𝑡), 𝑌(𝑡), Θ(𝑡), H(𝑡)),

 (3) 

where: 

𝐻(𝑡) =  [ℎ1(𝑡), ℎ2(𝑡), … , ℎ𝑉(𝑡)]
𝑇 . (4) 

By knowing all P system equations and Q degradation 

equations, we can proceed to RUL or EOL estimation. The 

examples of parametric degradation equations can be found 

in many prognostic studies, like those have been used by 

Daigle and Goebel (2011) and Daigle, Saha, and Goebel 

(2012). However, we will discuss the degradation equations 

in more details in section 4 to build our methodology and 

show the difference between our parametric degradation 

modeling and existing parametric degradation modeling 

studies. 

3. A GENERIC APPROACH FOR DERIVING THE GOVERNING 

EQUATIONS 

For many complex engineering systems, physical 

knowledge of the system is unknown or not enough to 

generate the governing equations, so physics-based 

approach cannot be helpful to generate all governing 

equations, but assuming generating all equations including 

the degradation models is in one`s interest. In such 

situations, the data-driven approach cannot be helpful as 

well. In the works related to data-driven approaches, there is 

no comprehensive methodology to show a way of deriving 

all governing equations of the system for all applications. 

Here, a new approach is presented that is the basis of next 

section and will be incorporated into it later. Suppose that 

we have the Mass-Spring-Damper System Excited by Force 

F(t), By balancing the forces, we can generate the 
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differential equations and by taking a Laplace 

transformation, we have:  

𝐺(𝑠) =
𝑥

𝐹
=

1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (5) 

where F is the input, and x is the output. The system 

parameters m, c, and k are known from the physical 

knowledge of the system. By substituting the values of 

parameters, the transfer function becomes: 

𝐺(𝑠) =
𝑥

𝐹
=

1

5𝑠2 + 20𝑠 + 1000
 (6) 

Now assume that we cannot find above equation by physics, 

but we have some data as inputs and outputs, in this 

condition, we can find the transfer function of G(s) by 

system identification techniques. However, first, we need to 

find the order of the model. Every transfer function in the 

most general form is like below:  

𝐺(𝑠) =
𝑎0 + 𝑎1𝑠 + 𝑎2𝑠

2 + 𝑎3𝑠
3 + …+ 𝑎𝑛𝑠

𝑛

𝑏0 + 𝑏1𝑠 + 𝑏2𝑠
2 + 𝑏3𝑠

3 + …+ 𝑏𝑚𝑠
𝑚

 (7) 

So before we proceed to find the parameters, we need to 

find the model order, i.e., the values of n and m in Eq. (7). 

3.1. Model order estimation 

As reported by Ljung (1999), model order estimation 

mainly falls into the four categories: (1) Investigating the 

spectral analysis of the transfer function, (2) Investigating 

the ranks of sample covariance matrices, (3) Correlating 

variables, (4) Investigating the information matrix (Ljung, 

1999). For further details, one can see the aforementioned 

reference. 

3.2. Model identification 

After identifying the model order, we need to find the 

parameters of the transfer function. We use model 

identification techniques that have been well developed in 

liteature, i.e., Ljung (2009) and Garnier, Mensler, and 

Richard (2003). Also, we should mention that these 

techniques are used to find constant parameters.   

However, in the procedure of determining the system 

parameters, the model structure needs to be determined as 

described below. 

3.3. Model Structure Estimation 

Ljung (2013) explained that the linear models often could be 

adequate to show the system behavior, but if in some 

applications the model output does not appropriately 

regenerate the measured output, then we need to utilize a 

nonlinear model. 

Determining that the model is linear or nonlinear is called 

Model Structure estimation, that naturally is before the 

Model Order Estimation, but we usually start with linear 

structure and then we try to estimate the model order and if 

the behavior of the system could not be fitted to inputs and 

outputs appropriately, then we need to try some certain 

nonlinear models like Nonlinear ARX Models, 

Hammerstein-Wiener Models, and Linear Approximation of 

Nonlinear Models (Ljung, 2013) and (Ljung, 1999). So in 

the previous example, after estimating the model structure 

and model order, then we will reach to following transfer 

function: 

𝐺(𝑠) =
𝑥

𝐹
=

𝑏1
𝑎1𝑠

2 + 𝑎2𝑠 + 𝑎3
 (8) 

Moreover, as we discussed earlier, we can find the 

parameters 𝑎1,  𝑎2,  𝑎3, 𝑏1 by using model identification and 

finally we reach to same Eq. (6). 

As we see, the final result in physics-based approach and 

this approach (up to here) is identical (a transfer function 

with known parameters). 

To fulfill the modeling sub-part of the prognosis, we need to 

proceed to one more step that is model validation. 

3.4. Model Validation 

In the physics based approach, we usually do not have this 

step, because the governing equations have been generated 

with universally accepted principal laws, e.g., Newton`s or 

Euler`s laws have been accepted, but here we need model 

validation because the system equations have been 

generated by using measured data.  

For validating model, there are some certain methods to 

validate both linear and nonlinear models, and one can see 

(Ljung, 2013). 

So after we confirmed that our model is suitable, we can 

proceed to the next step. Otherwise, we need to return and 

regenerate proper system equations.  

Finally, we have the system equations (primary equations), 

the second step is finding the degradation equations 

(secondary equations). 

4. A GENERIC APPROACH FOR DERIVING THE 

DEGRADATION EQUATIONS 

Degradation equations can be any function of inputs, 

outputs, and parameters. Parametric degradation modeling 

has some drawbacks. First, it is necessary to decide which 

one of inputs, outputs, and system parameters is effective in 

each degradation model. Second, it is necessary to decide 

the form of relationship between those chosen variables. 

Third, ensuring that these degradation equations are 

sufficient to consider all degradation mechanisms. Here we 

provide a new modeling approach to overcome these issues 

by digging into the concept of degradation.  
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Lemma 1. The degradation phenomenon of a system is 

nothing but a continuous drift at least in one of the 

parameters of the system (Borutzky, 2014). The evolution of 

parameter(s) finally causes the system to fail when some 

parameters or a combination of parameters as a health state 

violate at least one predefined threshold.  

Lemma 2. “Degradation phenomena can be classified into 

three main categories: linear, concave and convex profiles 

(as shown in Figure 1), and any degradation mechanism can 

be directly modeled by one of the bond graphs passive 

elements: R (Resistor), C (Capacitor) and I (Inductor)” 

(Medjaher & Zerhouni, 2009).  

As a next backup to the lemma 2, Peysson, Ouladsine, 

Noura, Leger, and Allemand (2008) mentioned that each 

degradation profile over time ∆ is modeled by a two-step 

process, first qualitatively and then quantitatively. In their 

qualitative section, they characterized each degradation 

mechanism by the signs of its first and second derivatives 

(∆̇, ∆̈) by using - and + and 0 so that finally their qualitative 

section will be summarized just into three main profiles, 

linear when ∆̇≥ 0, ∆̈= 0 , concave when ∆̇> 0, ∆̈< 0 , and 

convex when ∆̇> 0, ∆̈> 0 , (Figure 2). In their following 

work (Peysson, Ouladsine, Outbib, Leger, Myx, & 

Allemand, 2009), the quantitative modeling part has been 

enhanced where they have characterized each degradation 

mechanism quantitatively by two parameters 𝛼 and 𝛽 so that 

the linear degradation can be identified by 𝛼𝑡𝛽 in which 

𝛽 = 1, 𝛼 > 0, the concave degradation mechanisms can be 

identified by 𝛼𝑡𝛽 in which 0 < 𝛽 < 1, 𝛼 > 0 , and the 

convex degradation mechanisms can be identified by 𝛼𝑡𝛽 in 

which 𝛽 > 1, 𝛼 > 0.   In fact, the qualitative analysis 

identifies one of the three main profiles (linear, concave, 

and convex) in Figure 2, but the quantitative analysis 

uniquely specifies the right profile among all profiles in 

each three categories in Figure 2 by the values of 𝛼 and 𝛽.  

Remark 1. In real operating conditions, the equipment 

reliability is influenced by two sets of factors: the operating 

mode and the external environment (Peysson et al., 2009).  

In this regard, Peysson et al. (2008) identified a matrix form 

analysis for qualitative and quantitative investigation of 

degradation (Table 1 and Table 2) in which the  
𝐸𝑗  stands for each environment condition and  

𝑂𝑀𝑖  stands for each operating mode. In Table 1, the first 

sign in each cell is related to the first derivate of degradation 

profile ( ∆̇)  and the second sign is related to the second 

derivate of the degradation profile (∆̈). So each degradation 

profile in Figure 2 is for one specific operating mode and 

one specific environment. So later, when we present our 

approach, it should be considered that the whole approach is 

valid for a given operating mode and environment, but the 

proposed approach can be used similarly for other operating 

modes and environments. In addition, Peysson et al. (2008) 

put only the parameter 𝛼 of 𝛼𝑡𝛽 in Table 2 and assumed 𝛽 

just can be 1 for linear, 0.5 for concave and 2 for convex 

and so did not put 𝛽 in Table 2, but we extended that table 

based on Peysson et al. (2009). Furthermore, Peysson et al. 

(2008), used matrix form for their own methodology, since 

our methodology would be different, we do not need the 

matrix form.  

Remark 2. The constant parameters are a specific case of 

the linear profile with zero slope. 

 

Figure 1. Possible forms for degradation models adapted 

from Medjaher and Zerhouni (2009) 

 

Figure 2. Qualitative and Quantitative descriptions of 

degradation modeling adapted from Peysson et al. (2008). 

 𝐸1 𝐸2 ⋯ 𝐸𝑗 ⋯ 𝐸𝑚 

𝑂𝑀1 ++ 00 ⋯ +- ⋯ 00 

𝑂𝑀2 +- +0 ⋯ ++ ⋯ 00 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑂𝑀𝑖  +0 ++ ⋯ +0 ⋯ +- 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑂𝑀𝑛 +0 ++ ⋯ +0 ⋯ +- 

Table 1. The qualitative matrix adapted from Peysson et al. 

(2008) 

 𝐸1 𝐸2 ⋯ 𝐸𝑗 ⋯ 𝐸𝑚 

𝑂𝑀1 𝛼1,1 

𝛽1,1 

𝛼1,2 

𝛽1,2 

⋯ 𝛼1,𝑗 

𝛽1,𝑗 

⋯ 𝛼1,𝑚 

𝛽1,𝑚 
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𝑂𝑀2 𝛼2,1 

𝛽2,1 

𝛼2,2 

𝛽2,2 

⋯ 𝛼2,𝑗 

𝛽2,𝑗 

⋯ 𝛼2,𝑚 

𝛽2,𝑚 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑂𝑀𝑖  𝛼𝑖,1 

𝛽𝑖,1 

𝛼𝑖,2 

𝛽𝑖,2 

⋯ 𝛼𝑖,𝑗 

𝛽𝑖,𝑗 

⋯ 𝛼𝑖,𝑚 

𝛽𝑖,𝑚 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑂𝑀𝑛 𝛼𝑛,1 

𝛽𝑛,1 

𝛼𝑛,2 

𝛽𝑛,2 

⋯ 𝛼𝑛,𝑗 

𝛽𝑛,𝑗  

⋯ 𝛼𝑛,𝑚 

𝛽𝑛,𝑚 

Table 2. The quantitative matrix, a corrected version of 

Peysson et al. (2008) 

Corollary 1. Based on lemmas 1 and 2, although the 

degradation equations in terms of inputs (U)/ outputs (Y)/ 

system parameters (𝛩)/ secondary parameters (H) can have 

many different forms, finally they just have three main 

profiles with respect to time.  Since degradation is nothing 

but drift in parameters, so each degradation equation can be 

represented as a system parameter being a function of time. 

So from a microscopic level perspective, each degradation 

phenomenon has a one-to-one correspondence with each 

system parameter (Figure 3).  As we see in this figure, the 

number of degradation phenomena is exactly equal to the 

number of system parameters and each of these k 

degradation phenomena can have one of aforementioned 

three profiles. 

Corollary 2. The next important key point is that wear, 

corrosion, erosion, creep, and other well-known degradation 

mechanisms which are usually considered in degradation 

modeling, are not exactly equivalent to  𝑒𝑞1, 𝑒𝑞2, … , 𝑒𝑞𝐾 

discussed in corollary 1. In fact, there is not a one-to-one 

correspondence between  𝑒𝑞1, 𝑒𝑞2, … , 𝑒𝑞𝐾  and each well-

known degradation mechanism such as wear, corrosion, and 

etc., and actually each of wear, corrosion, and etc. can be a 

combination of system parameters 𝜃1(𝑡), 𝜃2(𝑡), … , 𝜃𝐾(𝑡) 
and so can have more complicated graphs beyond those 

three main profiles. Degradation phenomenon is a more 

general concept than the degradation mechanism. 

Degradation mechanisms correspond to wear, erosion, 

corrosion, crack, and so forth for which, physical 

background have been understood, but degradation 

phenomenon is defined just as a drift in one system 

parameter. Figure 4 shows some examples of the 

relationship between degradation mechanisms and set of 

related parameters. As shown in Figure 4, the ‘wear 1’ can 

be interpreted as a drift in just one parameter while ‘wear 2’ 

and ‘corrosion 1’ can be a combination of several system 

parameters. In the latter situations, the parameters that are 

effective in the degradation mechanism are more than one 

and the profiles will not follow just one of those three 

profiles and can be any combinations of them like a graph 

with two peaks (like multimodal situations). On the other 

hand, some degradation phenomena like drifts in parameters 

7 or 6 or 9 cannot be categorized as one of well-known 

degradation mechanisms like wear, corrosion, and so forth,  

 

Figure 3. One-to-one correspondence (Bijection) between 

system degradation phenomena and system parameters. 

Figure 4. Illustration of system parameters and well-known 

degradation mechanisms. 

because drifts of some system parameters do not have 

physical meaning or they have physical meaning, but they 

are unknown and unsought up to this date. These are the 

issues that will be solved by our approach. 

Corollary 3.  Most of the previous research works in 

parametric degradation modeling just considered the 

degradation mechanisms such as wear, erosion, and then 

used their approach for finding the parameters involved in 

each degradation mechanism. In these approaches, it is 

possible to miss some degradation phenomena like number 

7 or 9, as discussed in corollary 2 in details. However, 

consider Figure 4, now instead of focusing on each 

degradation mechanism (e.g., wear 1 in which one system 

parameter is involved, wear 2, corrosion, etc.)  to do 

parametric degradation modeling, we propose a new 

approach. We subjectively release the packages of all 

degradation mechanisms and remove their boundaries in 

Figure 4; now we have a set of all system parameters, and 

instead of focusing on the package of each degradation 

mechanism and consider the drift of each parameter. Then 

there are K degradation phenomena microscopically, and 
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each of them has just one of the three main profiles in 

corollary 1. In fact, in this approach, the lowest level (unit) 

of degradation is considered separately. By using this 

approach, the aforementioned issues in corollary 2 will be 

resolved. This is the basis of our degradation modeling. By 

this approach, the set of degradation equations would be 

more complete, and this leads to a more reliable RUL 

estimation.  

Remark 3.  It should be emphasized that based on 

corollaries 1, 2, and 3 our methodology can be used to 

model degradation phenomena for a system with a given 

operating mode and environment (in a similar situation and 

scope of previous methods), but each degradation 

phenomenon has only three profiles (R, I, C). These two 

concepts should not be mixed up. In fact, in an arbitrary 

system, all degradation profiles can be just linear (just one 

of those three profiles).  

Remark 4.  The decision among R, I, or C (among three 

profiles) could be made if run-to-failure data are available, 

or could be given by experts (Peysson et al. 2009). In our 

proposed approach we assume that data are available, so 

there is no need for experts.   

Remark 5.  In most of the previous approaches for 

parametric degradation modeling, based on the level of 

system inference, the number of degradation equations, Q, 

may change. However, in our microscopic view of 

degradation modeling, the number of degradation equations 

is always equal to the number of system parameters, K.  

5. PROVIDING A GENERIC FRAMEWORK BY COMBINING 

THE GOVERNING EQUATIONS AND DEGRADATION 

EQUATIONS  

In our approach, the form of primary (governing) equations 

is similar to Eq. (1) however, the form of secondary 

(degradation) equations is different from Eq. (3) and is like 

Eq. (9). In fact, in parametric degradation modeling, finding 

the form of degradation equations has been always a 

challenge, because degradation can be modeled as a 

function of inputs (U)/ outputs (Y)/ system parameters (𝛩)/ 

secondary parameters (H), but we resolved this challenge by 

a new approach for degradation modeling and we found that 

the degradation equations based on a microscopic approach 

can be written like Eq. (9), arising from Figure 3. Now we 

are going to describe the structured way to find them in the 

current section. 

{
  
 

  
 
𝑒𝑞𝑃+1 = 𝑒𝑞𝑃+1(θ1(𝑡))

𝑒𝑞𝑃+2 = 𝑒𝑞𝑃+2(θ2(𝑡))
.
.
.

𝑒𝑞𝑃+𝐾 = 𝑒𝑞𝑃+𝐾(θ𝐾(𝑡)),

 (9) 

In Eq. (9), coefficients need to be estimated in the process of 

parameter model fitting. Also, some parameters will be 

found to be constant like the mass in the mass-spring-

damper system. 

Up to here we found the final forms of degradation 

equations over time, now consider the following logical 

sequence:  

1. Model order and structure are determined. 

2. Model identification techniques (section 3.2) are 

used to find the constant parameters, but:  

3. In PHM-related works, run to failure cases are in 

one’s interest, so parameters are variable rather 

than constant. 

4. So, in order to use model identification techniques, 

the run-to-failure time is divided into certain 

number of intervals of time such that the 

parameters can be considered constant in each 

interval, then the model identification techniques 

can be used to find the constant parameters for 

each interval, but since the model structure and the 

model order might be different in each interval, it 

is better we make the time intervals before step 1.  

5. After implementation of the preceding steps for all 

intervals and all parameters, the value of each 

parameter for the run-to-failure period can be 

attained. 

6. Fitting parameters to one of I, C, or R. 

7. After implementing the preceding step for all 

parameters, degradation equations are derived that 

govern the parameters evolution over time. 

8. Now all governing equations of the system are 

derived. 

9. Finally, RUL or EOL estimation can be proceeded. 

Remark 6.  In the physics-based approach, before 

proceeding the RUL or EOL estimation, we need to 

substitute the values for some constant parameters like 

masses, material properties and etc., while in the proposed 

generic approach, such parameter substitution is not 

required, because they will be found by having data and 

using system identification techniques organized in section 

3.  

6. DISCUSSION 

We have revisited the degradation phenomenon and 

concluded the corollary 1,2, and 3 and combined them in a 

new way with some system identification techniques to 

finally provide a generic degradation modeling (which is 

coupled with governing equations).    
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This approach is different from the physics-based approach. 

Also, as found in the literature, most of the parametric data-

driven approaches do not have a generic approach to (1) 

derive governing equations, (2) derive degradation 

equations, and (3) finally combine them in a way so that the 

generality is conserved. The proposed approach is 

comprehensive because it can provide both system and 

degradation equations (primary and secondary equations) in 

a generic way and covers nonlinear systems as well. In other 

approaches, there is no guaranty that all degradation 

equations are formulated, and there is always the possibility 

that a specific degradation phenomenon of a system is 

unknown or partially known and consequently it will be 

ignored. However, our microscopic approach in degradation 

modeling based on corollaries 1, 2, and 3 can be more 

reliable. 

To summarize the modeling framework and its steps, the 

flowchart of the proposed approach is illustrated in Figure 5. 

Finally, to illustrate the capability of this method in practice, 

the comparison between previous studies and the proposed 

approach in parametric degradation modeling are discussed. 

Consider a centrifugal pump and bearing system (Figure 6) 

which has been studied by the traditional parametric 

degradation modeling researchers (Daigle et al., 2012). In 

order to find the remaining useful life of this system, the 

researchers need to find the degradation models. 

Conventional approaches utilize a physical understanding of 

the system to identify some critical components that are 

more prone to degrade over time. One of the main 

degradation mechanisms of the centrifugal pump is 

mechanical wear of bearing due to sliding and rolling 

friction. Hence, they chose two appropriate degradation 

models from the previous studies such as Eq. (10) (Daigle et 

al., 2012):  

{
𝑟�̇�(𝑡) = 𝑤𝑡𝑟𝑡𝜔

2

𝑟�̇�(𝑡) = 𝑤𝑟𝑟𝑟𝜔
2,

 (10) 

where 𝜔  is the rotational velocity of the pump, 𝑟𝑡  is the 

friction coefficient for the thrust bearings, 𝑟𝑟   is the friction 

coefficient for the radial bearings, 𝑤𝑡  and 𝑤𝑟  are the wear 

coefficients (Daigle et al., 2012).   

This approach for parametric degradation modeling works 

relatively well until we face two main situations: 

1. For complex engineering systems which are 

fabricated by the same conventional manufacturing 

processes but composed lots of components and a 

variety of degradation mechanisms, finding the 

appropriate degradation models is not as 

straightforward as the aforementioned simple case, 

2. The structures which are fabricated by the new 

manufacturing processes such as 4D printing which 

do not have any conventional mechanical and 

electromechanical parts such as bearings and so 

forth but will undergo the degradation such as 

Figure 7. 

The difficulty of the current parametric degradation 

modeling for the first situation which is an extension of the 

aforementioned simple case would be evident by a priori 

knowledge. However, for the second situation consider the 

Figure 7 showing a simple case of 4D printed structure. 

Similar to the other 4D printed structures, it does not have 

any conventional parts like bearings, electromechanical 

parts, and so forth. It is just a multi-material, single-piece, 

one-time printed structure but will undergo the degradation. 

The current parametric degradation modeling would not be 

totally suitable for this situation as well. However, the 

proposed approach in this paper by introducing the 

degradation phenomenon as a more general concept than 

degradation mechanism, leading to a general methodology, 

would be more reliable for these two situations.  
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Proposed approach

Linear model assumption in each time interval

Model Order Estimation in each time interval

Good 

fitting

Good 

Model 

Validation 

Result

Parameter fitting to one of  linear, concave, and 

convex profiles for each system parameter 

Yes

Nonlinear 

Models 

No

Yes

No

RUL or EOL 

estimations

Dividing the run to failure time into some intervals 

Using model identification technique to find the  

parameters for each interval

Generating the K degradation equations 

By knowing P governing equations and K degradation 

equations and using filtering techniques 

 

Figure 5. Flowchart of proposed approach 

 

Figure 6. Centrifugal pump and its bearings adapted from 

Daigle et al. (2012). 

 

Figure 7. 4D printed structure performing the shape-shifting 

under water, over time, adapted from Tibbits et al. (2014). 

7. CONCLUSION 

We addressed and organized a new approach in degradation 

modeling. This approach can be more beneficial in the cases 

that the physical knowledge is not sufficient such as two 

main situations including: (1) Complex engineering systems 

which are fabricated by the conventional manufacturing 

processes but consists of numerous components and  various 

degradation mechanisms, (2) the structures which are 

created by the new manufacturing processes such as 4D 

printing which do not have any conventional mechanical 

and electromechanical parts but will undergo the 

degradation. The major aspects of this study are (1) 

quantifying the concepts of both system governing 

equations and degradation equations in prognostics in a 

general form, (2) providing a generic approach to derive the 

governing equations by using some techniques from system 

identification, (3) analyzing the concepts of degradation so 

that it provided a microscopic approach for generic 

degradation modeling, and (4) incorporating the governing 

equations and degradation equations in a way that the 

generality of the approach for finding governing equations 

and degradation equations is conserved. The main 

contributions of this research lie in degradation modeling 

and combining it with governing equations by a generic 

perspective. The proposed approach due to its nature can be 
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engaged in system-level degradation modeling with partial 

physical knowledge for resolving prognostic problems in 

new and complex systems.  
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