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Abstract – Granular matter exists out of thermal equilibrium, i.e. it is athermal. While
conventional equilibrium statistical mechanics is not useful for characterizing granular materials,
the idea of constructing a statistical ensemble analogous to its equilibrium counterpart to describe
static granular matter was proposed by Edwards and Oakshott more than two decades ago. Recent
years have seen several implementations of this idea. One of these is the stress ensemble, which is
based on properties of the force moment tensor, and applies to frictional and frictionless grains. We
demonstrate the full utility of this statistical framework in shear-jammed (SJ) experimental states,
a special class of granular solids created by pure shear, which is a strictly non-equilibrium protocol
for creating solids. We demonstrate that the stress ensemble provides an excellent quantitative
description of fluctuations in experimental SJ states. We show that the stress fluctuations are
controlled by a single tensorial quantity: the angoricity of the system, which is a direct analog
of the thermodynamic temperature. SJ states exhibit significant correlations in local stresses and
are thus inherently different from density-driven, isotropically jammed (IJ) states.

Copyright c© EPLA, 2013

Introduction. – A remarkable property of systems in
thermal equilibrium is that the probability of occurrence of
a microscopic state is known a priori through the universal
Boltzmann distribution Pν = e−βEν /Z(β). Here, β is the
inverse temperature and Eν is the energy of the microstate
ν. The Boltzmann distribution defines characteristics
such as the relation between fluctuations and response [1].
By contrast, granular systems are intrinsically out of
thermal equilibrium, and we lack a broad framework
for describing their statistical properties [2]. The idea
of constructing statistical ensembles to describe granular
systems originated in a proposal by Edwards [3] that the
fluctuations of slowly driven, dense granular systems was
controlled by the ensemble of “blocked” states, granular
assemblies in static, mechanical equilibrium. The original
Edwards ensemble uses free volume in a granular system as
the analog of energy in a Gibbsian statistical framework.
A more recent model is the force network ensemble
(FNE) [4,5], which has been useful in describing force
fluctuations on fixed granular geometries. The stress

ensemble is a generalization of the original Edwards idea,
and is based on a “conservation” principle that arises from
the constraint of local force and torque balance on every
grain [6]. Merging of the original Edwards ideas with the
stress ensemble approach leads to an analog of the Boltz-
mann distribution for granular solids (blocked or jammed
states), where the role of temperature is played by two
distinct quantities: a) the compactivity which is conjugate
to volume, and b) angoricity, a tensor that is conjugate to
the force moment tensor of granular solids [7,8].

The applicability of the concept of angoricity
as a temperature-like variable has been beautifully
demonstrated in recent experiments using photoelastic
disks [9]. In earlier work, the concept of angoricity was
applied to analyze stress fluctuations in simulated assem-
blies of frictionless grains [7,10]. These granular solids,
frictional assemblies in experiments, and frictionless in
the simulations, shared the common feature that the
solidification is density driven. They, therefore fall within
the rubric of the universal jamming phase diagram [11],
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and can be viewed as zero-temperature limits of thermal,
amorphous solids.

A class of granular solids that are far from equilibrium,
and not described within the original jamming scenario
are shear-jammed (SJ) states [12,13]. These solids are
created through shearing without changing the density,
which is a strictly non-equilibrium pathway for creating
solids. They provide a unique opportunity for testing the
stress ensemble with its full tensorial complexity in an
ensemble that has no equilibrium analog. In this work we
show that the stress fluctuations in SJ states are described
quantitatively by the stress ensemble, which is the infinite
compactivity limit of the generalized ensemble. This test
of the stress ensemble is non-trivial since we demonstrate
that stresses have non-trivial correlations in SJ states,
unlike in density-driven granular solids.

The paper is organized as follows: The second section
provides a brief review of experimental SJ states, the third
section introduces the tensorial formulation of the stress
ensemble framework, the fourth section presents results of
testing the stress ensemble framework in SJ states, and
finally, in the last section, we discuss the correlations in
SJ states, and its implications.

Shear-jammed (SJ) states. – Dry grains interact
with purely repulsive, contact interactions. Without any
cohesion between them, the only way to create a solid
of dry grains is by applying a load at the boundary.
A common feature of most experimental [9,14] and nu-
merical [15] techniques for creating jammed states is the
application of isotropic pressure (we shall call these IJ
states from here on). The jamming transition is defined as
the onset of mechanical stability, and usually associated
with a particular packing fraction, φJ , [11] that can be
protocol dependent. IJ states can also be sheared to study
their response [15,16]. However, in these cases, shear stress
should be considered a perturbation to an already jammed
state, and under large enough shear stress, IJ states can
unjam into flowing states.

In contrast, the observation of SJ states in experi-
ments [12,13] and simulations [17] has demonstrated that
applying isotropic pressure is not a necessary condition
for jamming. For a range of packing fractions below the
isotropic φJ for a given protocol, jammed states can be
created by applying shear only. The experimental SJ
states, in two dimensions, are created through application
of quasistatic, forward shear [12]. Packing fraction does
not play a significant role in determining the properties of
SJ states (fig. 1). For example, it has been shown that
pressure and shear stress do not depend monotonically on
φ as one would expect in IJ states, but rather monotoni-
cally scale with the fraction of force bearing grains in the
system [12]. The SJ states are qualitatively different from
IJ states. Whereas IJ states can have non-vanishing pres-
sure and zero shear stress, pressure arises as a consequence
of shearing in SJ states [13]. SJ states have strongly
anisotropic fabric and force networks and stress tensors. It
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Fig. 1: (Color online) Pressure vs. φ for all experimental
states from [12]. Red: isotropic states with τ ≈ 0 (see also
footnote 1). Blue: states with τ > 0. States below the
experimental pressure resolution, P0, cannot be identified for
certain as jammed because of friction with base plate [12].
What is certain is that there are no isotropic states below φJ ,
for these states there is a sharp transition to finite pressure at
φJ . For states with non-zero shear stress, there is no sharp
transition as a function of the packing fraction.

has been shown that the SJ states emerge as a consequence
of a percolation transition in the force network [12].

Stress ensemble. – Over a decade ago, Edwards
and Oakeshott [3] theorized that the dynamics of slowly
driven granular materials is controlled by the statistics
of mechanically stable configurations, known as blocked
states. A simple thermal system is specified by the
state variables E,V , and N . In constructing a statistical
ensemble for athermal granular materials, the role of the
Hamiltonian in a thermal system is replaced by the volume
function of a granular packing. Known as the Edwards
ensemble, all blocked states of the same volume V are
assumed to be equiprobable (microcanonical hypothesis).
An entropy is defined for a granular state with the state
variables V and number of grains N , S(V,N). The analog
of the thermodynamic temperature can be defined by
X(V ) = ∂V/∂S. X or the compactivity [3] is conjugate
to the volume, and hence X = X(V ) is also the primary
equation of state. A microstate labelled by ν, inside a
granular packing with total volume V is found with a
probability proportional to the canonical distribution

Pν =
1

Z(X)
exp[−wν/X]. (1)

Here, the volume function (analog of the energy Eν) is
determined by the set of grain positions wν = w({�ri}).

The recent interest has focused on conservation laws
and the sampling of the phase space of blocked states,
especially in the context of extending the ensemble frame-
work to stiff but not infinitely rigid grains. The basic aim
of any ensemble approach is to predict the probability of

1The unjammed states (red points) at high pressure and low φ
are actually isotropic states created by rare rearrangements of the
anisotropic SJ states.
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occurrence of a microscopic state, given a set of macro-
scopic, measurable quantities such as the volume and the
external stress. A static granular packing is ultimately
characterized by the positions of the grains, {�ri}, and the
set of contact forces, {�fij}. Specification of the forces is
essential for defining static states of frictional grains, and
it is therefore crucial to include the contact forces in a
generalized statistical description for infinitely rigid and
stiff grains. Among the various formulations there are
two different ways to incorporate {�fij} in an ensemble:
1) the FNE [6] in which micro states are characterized
only by {�fij}, and 2) the stress ensemble [6–8]2, which
considers {�ri}, and {�fij}. The latter, unlike the FNE, is
not restricted to a fixed geometry.

In the stress ensemble, in addition to volume, granular
blocked states are also characterized by the force moment
tensor, which is a function of both grain positions {�rij}
and inter-granular forces {�fij}

Σ̂ =
∑
i<j

�rij ⊗ �fij
2d=

(
Σ11 Σ12

Σ12 Σ22

)
. (2)

The constraint of local force balance leads to a con-
servation law for Σ̂ [6,9], which states that the force-
moment tensor cannot be changed by local intervention
such as tapping. Changing Σ̂, while maintaining force
balance on every grain, requires changing the forces on
a line of grains that spans the system [6,7]. For a large
system, there is thus a conservation principle reminiscent
of energy conservation in non-dissipative systems. Taking
tapping as an example for generating blocked states, the
microcanonical stress ensemble is defined by fixing the
values of V and Σ̂. In addition to compactivity, the stress
ensemble involves an intensive variable that is conjugate
to Σ̂. This is the angoricity tensor, α̂−1, identified by
Edwards and coworkers [3]. The relation between α̂ and
Σ̂ is analogous to the relationship between β and E in a
thermodynamic system.

In a canonical ensemble formulation [7], the probability
of obtaining a microstate ν with volume wν and force
moment tensor Σ̂ν is given by a tensorial generalization
of the Boltzmann distribution

Pν =
1

Z(X, α̂)
exp

(
−wν

X

)
exp

(
−α̂ : Σ̂ν

)
, (3)

where “:” stands for tensor contraction and the angoricity
tensor α̂−1 is defined by

αkl =
∂S(V, Σ̂)

∂Σkl

∣∣∣∣
V

. (4)

In two dimensions, we have

α̂ =
(

α11 α12

α12 α22

)
. (5)

2We emphasize that the stress ensemble described here is not on
a fixed geometry, but rather it comprises of states with different
contact and force networks.

In the above thermodynamic formulation, the entropy
S(V, Σ̂) should be taken as the large M limit of the entropy
of M -grains. Since all blocked states are in force and
torque balance, their force moment tensor Σ̂ is always
symmetric, hence α̂ is also symmetric via eq. (4). It
should be noted that while both α̂ and Σ̂ transform like
tensors under rotation, the argument of the Boltzmann
term in eq. (3) contains only terms that are rotationally
invariant scalars, which, as analog of βE, it should be.
Also as a result the entropy can only depend on rotational
invariants of the force moment tensor, i.e. S(V, Σ̂) =
S(V, tr(Σ̂),det(Σ̂)).

Volume fluctuations in SJ states are less relevant than
they are in IJ states. Analysis of SJ states shows that
stress fluctuations and volume fluctuations are decoupled,
and unlike IJ states, the packing fraction is not a state
variable that determines the jamming probability under
the shearing protocol [12]. These observations suggest
that the pure stress ensemble, obtained in the limit of
X → ∞ is the one relevant for describing the fluctuations
of SJ states. For a subset m < M of the particles, the pure
stress ensemble [7] is defined by the canonical distribution

P (Σ̂m) =
1

Z(α̂)
exp

[
Sm(Σ̂m)

]
exp

(
−α̂ : Σ̂m

)
. (6)

The canonical distribution (eq. (6)) describes the stress
fluctuation in a region containing the m-grains that is in
a “angoricity” bath due to the remainder of the system
(see fig. 2(a)). Sm(Σ̂m) is the (microcanonical) entropy
function which is defined by counting the number of
microstates

Sm(Σ̂m) ∝ log

[∑
ν

ων δ(Σ̂m − Σ̂ν)

]
. (7)

In this formulation, we have allowed for the possibility
of microstates not being sampled equally by including a
microscopic weight ων for state ν [18]. The stress ensemble
and the original Edwards ensemble has be extended to
include this possibility [6,19].

Measuring angoricity. – In order to apply eq. (6)
to the experimentally generated SJ states, we need a
measure of α̂. Unfortunately, we have no “thermometer”
for directly measuring angoricity, and have to base its
measurement on postulated or measured equations of state
relating α̂ to Σ̂.

In IJ states, a scalar version of eq. (6) is applicable,
and there is a scalar α that is conjugate to Γ, the trace
of the force moment tensor. In [10], the stress ensemble
was applied to analyze pressure fluctuations in simulated
frictionless IJ states, and an equation of state was deduced
from these measurements. More recently, an equation of
state has been deduced from measurements in IJ states of
frictional packings [9]. In both systems, a linear relation
was found between the inverse angoricity and ΓM of an M -
grain system: α ≈ M

ΓM
. Since this linear relation worked
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Fig. 2: (Color online) (a) Schematic demonstration of a sub-
region of size m and Σ̂m inside a packing with (M , Σ̂M ).
Here we define subregions as any contiguous cluster of m-grains
roughly circular in shape. (b) Equation (6) predicts that when
the distribution of local force moment tensor is multiplied by

eα̂:Σ̂ (shown in the inset for m = 15 and the 22-component
of the local force moment tensor in SJ states), its logarithm
should be related to the entropy of microstates Sm, and for
different α̂′s this function should only differ by an additive
constant. After a shift of each curve by Z22 calculated from
the eq. (12), we find that the data collapse onto a universal
curve in the main figure. The functional form of the collapses
data also shows good agreement with the postulated form of
entropy (eq. (13)), given by the solid red line.

quite well for pressure fluctuation in IJ states, we take
a straightforward generalization of this as a postulate for
the equation of state for SJ states.

α̂ ∝ M
(
Σ̂M

)−1

=
M

det
(
Σ̂M

) (
Σ22,M −Σ12,M

−Σ12,M Σ11,M

)
. (8)

Using this equation of state, each M -grain SJ state can be
labelled by an angoricity tensor, since the force moment
tensor is measured in the experiments. In the experiments,
M ∼ 1000, and one could wonder about this being large
enough to be in the thermodynamic limit. We will address
this question below through analysis of the convergence of
the entropy function.

Equation (6) predicts the distribution of stress in a
subregion containing m-grains at the angoricity given by
α̂. As has been pointed out before [19], this Boltzmann-
like distribution has a very special form. It has a term that
depends purely on Σ̂, a term that depends purely on α̂, and
the combination of these two variables appears only in the
exponential. The stress ensemble would, therefore, predict
that multiplying the distribution by eα̂:Σ̂ and taking its
logarithm would yield a function that depends on Σ̂ and
distributions corresponding to different α̂s would differ
only by an additive constant, or

log
[
P (Σ̂m)eα̂:Σ̂m

]
= Sm

(
Σ̂m

)
− log Z(α̂). (9)

We directly test these predictions as follows. All SJ
states, regardless of the value of the shear strain or
the packing fraction φ, are categorized by their global
force moment tensor Σ̂M . Through the equation of

state (eq. (8)), the value of the angoricity tensor is
determined. Then for each SJ state at a particular α̂,
random contiguous clusters containing m-grains (fig. 2(a))
are chosen to form an ensemble of subregions with different
values of Σ̂m, giving a probability distribution Pα̂

(
Σ̂m

)
.

To simplify the analysis, we avoid dealing with the multi-
dimensional distribution function and instead, we analyze
the reduced distributions for each component of the local
force moment tensor.

Figure 2(b) shows that the data collapse implied by
eq. (9) works remarkably well for a subregion containing
15 grains. We find similar data collapse for the other
components of the force moment tensor, and for m as
small as 4. For smaller m, there is more of a spread in
the data, however, there is remarkably fast convergence
as a function of m to a universal functional form, which
we can interpret as the thermodynamic entropy S(Σkl)
for kl = 11, 22, 12. The solid red line in fig. 2(b) is the
functional form deduced from the assumed equation of
state and the definition of of α̂ (eq. (4))

SM (Σ̂M ) = A M log
[
det Σ̂M

]
. (10)

Here, A = 0.5 is a constant of proportionality that is de-
termined from the best fit to the collapsed data. A few fea-
tures of fig. 2(b) are of note: there is a small but systematic
difference between the entropy deduced from the equation
of state, and the form of the collapsed data, especially at
small values of Σkl. In spite of these small differences,
the fact that we can collapse the data demonstrates that
the Boltzmann-like distribution defined by an angoricity
tensor (eq. (6)) works remarkably well for SJ states.

The equation of state that we postulated is the analog
of an ideal-gas equation of state relating temperature and
energy. If the entropy implied by this equation of state
(eq. (10)) were to hold exactly for the SJ states, then it
would imply that stress correlations in these states are
shorter-ranged than the size of the m-grain subregions
that we have analyzed. Below, we assume that the
ideal-gas entropy holds, deduce an explicit scaling form
for the distribution of stresses for m-grain subregions,
and show that the ideal-gas model fails to describe the
distributions in detail, and especially their scaling with m.
To understand this observation, we analyze the variance
of the components of the stress, and what it implies for
stress correlations. Finally, we discuss how to reconcile the
success of the equation of state with these observations.

Since the SJ states are created with bi-axial shear the
resulting normal stress Σ11,M − Σ22,M is much larger
(∼ 10 times [12]) compared to the off-diagonal component
Σ12,M . This justifies expanding the equation of state,
eq. (8) to first order in

(Σ12,M )2

Σ11,M Σ22,M
� 1. (11)

Then, reduced distributions of a particular force moment
tensor component Σkl can be obtained from eq. (6) and
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Fig. 3: (Color online) (a) Probability distributions for the
reduced variable defined in eq. (14). Solid red curves are
theoretical predictions (eq. (15) with fitting parameter A =
1/2). m indicates number of grains in the subregion over
which the local force moment tensor is defined. (b) Probability
distributions for the reduced variable defined in eq. (16). Solid
red curves are theoretical predictions. m indicates number
of grains in the subregion over which the local force moment
tensor is defined.

eq. (10) by integrating out all other components mn 	= kl.
For the 11 and 22 components

p11,m(Σ11,m) ≡
∫

dΣ22 dΣ12 P (Σ̂m)

=
α

m/2+3/2
11

Γ(m/2 + 3/2)
eSred(Σ11,m)e−α11Σ11,m ;

p22,m(Σ22,m) ≡
∫

dΣ11 dΣ12 P (Σ̂m)

=
α

m/2+3/2
22

Γ(m/2 + 3/2)
eSred(Σ22,m)e−α22Σ22,m ;

(12)

where we have introduced a reduced version of the entropy
(eq. (10)) that depends on one force moment tensor
component only

Sred(Σ11,m) = (Σ11,m)(m/2+1/2);

Sred(Σ22,m) = (Σ11,m)(m/2+1/2).
(13)

This form of the distribution for Σ11,m and Σ22,m at
various α̂’s can be collapsed by defining the rescaled

dimensionless variables

x =
1
m

α11Σ11,m, or

x =
1
m

α22Σ22,m,

(14)

yielding a gamma distribution

gm(x) =
m/2 + 3/2

(m/2)m/2+3/2
xm/2+1/2 e−mx. (15)

The rescaled distributions from SJ states are compared
to the prediction eq. (15) in fig. 3(a) for various local sub-
region sizes ranging from m = 5 to 71. This comparison
shows that the theoretical prediction captures the mean
and overall shape of the experimental distributions, but
that theory and experiment differ significantly in the width
of the distributions.

There is no simple scaled form for the off-diagonal
component Σ12,m, but in the limit of eq. (11) or α12 → 0,
we can write a reduced distribution of Σ12,m in terms of
rescaled local force moment components

x = Σ12,m/
√

Σ11,m Σ22,m (16)

to obtain

hm(x) =
Γ(m /2 + 3/2)
Γ(m /2 + 1)

(
1 − x2

)m/2
. (17)

In fig. 3(b), we plot eq. (17) for several m-values compared
with SJ data. In this case, there is very good agreement
between theory and experiment, including the variance.

Discussion. – Figure 3(a) clearly shows that the
variance of the local force moment tensor Σ̂ is not well
described by an ideal-gas–type model, particularly for
small m. To explore this deviation further, we studied
the scaling of the variance with the number of grains,
m. As shown in fig. 4, the variances of all components
of the stress scale as mγ , with γ ≈ 1.5. We note that
the variance is related to the integral of the two-point,
spatial correlation function of the force moment tensor of
grains. The observed scaling, with an exponent larger than
unity, can only arise if the correlations are long-ranged and
do not decay within the region containing m-grains [20].
Since our scaling is valid for m ≈ 100, which corresponds
approximately to a 10×10 grain subregion, we can deduce
that stress correlations do not decay away by 10 neighbors.
The observed scaling of the variance of stress components
in the SJ states is in sharp contrast to the experimental
observation in IJ states, where the variance scales as m [9].
Interestingly, the variance of the scaled stress defined in
eq. (16) scales as m indicating that this scaled stress does
not have long-range correlations. For both IJ and SJ
states, there is a well defined thermodynamic limit. SJ
states converge with

√
〈(δΣ)2〉/〈Σ〉 ∼ m−0.25, while IJ

states converge faster with
√
〈(δΣ)2〉/〈Σ〉 ∼ m−0.5.
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Fig. 4: (Color-online) log-log plot of the variances for each
local force moment tensor component as function of m. The
variances are scaled by arbitrary stress scales to make them
dimensionless. Dotted lines indicate the trend of m1.5.

Since the probability of occurrence of SJ states is well-
described by the Boltzmann-like distribution of eq. (6),
we can use our experience with equilibrium statistical
mechanics calculations to reconcile the ability of the ideal-
gas framework to describe the equation of state with the
presence of long-range correlations. It is known [20] that
two-point correlations enter calculations of entropy (or free
energy) through logarithmic corrections. It is, therefore,
reasonable to expect that the entropy and the equation of
state are much less sensitive to the existence of correlations
than the variance of the force moment tensor. The long-
ranged correlations in the local force moment tensor are
indicative of long force chains that are clearly visible
in SJ states [12,21]. We are currently investigating the
microscopic origin of the observed long-range correlations.

In this work, we have demonstrated that the stress
ensemble provides an excellent quantitative description
of fluctuations in experimental SJ states. We show that
the stress fluctuations are controlled by a single tensorial
quantity —the angoricity of the system, which is a direct
analog of the thermodynamic temperature. We show
that the SJ states exhibit significant correlations in local
stresses in sharp contrast to IJ states. This observation
reinforces the conclusion [12] that SJ states are not merely
density-driven jammed states created at a lower density.
These states are inherently different from density-driven
IJ states.
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