Borohydride Oxidation Reaction mechanism on nickel electrodes

Alexandr G. Oshchepkov⁺‡^{*}, Guillaume Braesch⁺§, Gholamreza Rostamikia⊥, Gaël Maranzana∥, Antoine Bonnefont#, Michael J. Janik⊥, Elena R. Savinova⁺, <u>Marian Chatenet</u>§^{*}

⁺ Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515 CNRS-Univ. Strasbourg, 67087 Strasbourg Cedex, France

‡ Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia

§ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France

Univ. Lorraine, CNRS, LEMTA, UMR 7563, 54504 Vandoeuvre Les Nancy, France
⊥ Dept. of Chemical Engineering, Pennsylvania State Univ., University Park, PA, 16802, USA
Institut de Chimie de Strasbourg, UMR 7177 CNRS-Univ. Strasbourg, 67070 Strasbourg, France

Marian.Chatenet@grenoble-inp.fr

Direct Borohydride Fuel Cells (DBFCs) could power portable and mobile devices owing to their high theoretical specific energy. The Borohydride Oxidation Reaction in principle occurs at very low potential (-1.24 V vs NHE, pH = 14) and produces 8 electrons per BH_4^- . However, these promises are not fulfilled on Pt and Pd, which are still the benchmarks for the BOR ¹, because they promote fast hydrogen evolution reaction (HER), which does not enable oxidation currents below 0 V vs RHE. As such, the advantages of the DBFC over the PEMFC remain limited with such electrocatalysts. Nickel-based electrocatalysts appear promising, since they are stable in alkaline conditions and nickel state of surface can be tailored to limit or on the opposite promote the hydrogen reactions ^{2,3}.

This presentation demonstrates that, indeed, nickel electrodes can be efficient for the BOR, in both rotating disk electrode setup and unit direct borohydride fuel cell ⁴. The BOR at Ni is also investigated in differential electrochemical mass spectrometry and Fourier-Transform infra-red spectroscopy. Based on these experimental findings and DFT calculations, a tentative mechanism of the BOR at nickel surfaces is proposed.

Acknowledgments

This work has been performed in the frame of the MobiDiC project, funded by the French National Research Agency (ANR, grant # ANR-16-CE05-0009-01) and the DGA. AO thanks the the Russian Science Foundation for funding (project No. 18-73-00143).

References

(1) Olu, P.-Y.; Job, N.; Chatenet, M. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks. *J. Power Sources* **2016**, *327*, 235-257.

(2) Oshchepkov, A. G.; Bonnefont, A.; Saveleva, V. A.; Papaefthimiou, V.; Zafeiratos, S.; Pronkin, S. N.; Parmon, V. N.; Savinova, E. R. Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media. *Top. Catal.* **2016**, *59*, 1319-1331.

(3) Oshchepkov, A. G.; Bonnefont, A.; Parmon, V. N.; Savinova, E. R. On the effect of temperature and surface oxidation on the kinetics of hydrogen electrode reactions on nickel in alkaline media. *Electrochim. Acta* **2018**, *269*, 111-118.

(4) Oshchepkov, A. G.; Braesch, G.; Ould-Amara, S.; Rostamikia, G.; Maranzana, G.; Bonnefont, A.; Papaefthimiou, V.; Janik, M. J.; Chatenet, M.; Savinova, E. R. Nickel Metal Nanoparticles as Anode Electrocatalysts for Highly Efficient Direct Borohydride Fuel Cells. *ACS Catal.* **2019**, *9*, 8520-8528.