In these notes we introduce the crystal structures of modules over Kac-Moody algebras obtained from Berenstein-Kazhdan perfect bases, especially on the complexified Grothendieck groups of type A Kac-Moody categorifications. In Section 1 we describe the structure of simple objects in an \mathfrak{sl}_2-categorification. In Section 2, we introduce the Berenstein-Kazhdan perfect bases of integrable highest weight representations of a Kac-Moody algebra. Finally in Section 3, we apply what we have in the first two sections to the example of categorical \mathfrak{sl}_2-action on modules over cyclotomic Hecke algebras, and conclude that this is a categorification of an irreducible \mathfrak{sl}_2-module.

1. Simple objects in an \mathfrak{sl}_2-categorification

1.1. Reminder and notation. Let \mathcal{C} be a general artinian and noetherian \mathbb{F}-linear abelian category equipped with a categorical \mathfrak{sl}_2-action given by the endofunctors E and F, the parameter $q \in \mathbb{F}^\times$ and $a \in \mathbb{F}$, where $a \neq 0$ if $q \neq 1$, and $L \in \text{End}(E)$, $T \in \text{End}(E^2)$. We adopt some notation from [Si] and [CR]:

- Let $[\mathcal{C}] = K_0(\mathcal{C}) \otimes \mathbb{C}$ denote the complexified Grothendieck group of \mathcal{C} and $H_q(n)$ denote the affine Hecke algebra generated by $X_1, \ldots, X_n, T_1, \ldots, T_n$ subject to the Hecke relations.
- For some $U \in \mathcal{C}$, denote $h_+(U) := \max \{ j : E^j U \neq 0 \}$, $h_-(U) := \max \{ j : F^j U \neq 0 \}$, and $d(U) := h_+(U) + h_-(U) + 1$. Also, denote the socle of U by $\text{soc}(U)$, which is the maximal semisimple subobject of U in \mathcal{C}, and the head by $\text{head}(U)$, which is the maximal semisimple quotient.
- $E(i)$, $F(i)$ denote the categorified divided powers.
- Let $\mathfrak{m}_n \subseteq P_n := \mathbb{F}[X_1^\pm, \ldots, X_n^\pm]$ be the ideal generated by $(X_i - a)$, $i = 1, \ldots, n$. Let $n_n := \mathfrak{m}_n^{\mathfrak{m}_n} \subseteq H_q(n)$. Let N_n be the category of $H_q(n)$-modules with locally nilpotent n_n-action. Since n_n is contained in the center of $H_q(n)$, the quotient $\overline{H}(n) = H_q(n)/n_n H_q(n)$ is an algebra. For $0 \leq i \leq n$, denote by B_i,n the image of the subalgebra $H_q(i)$ inside $\overline{H}(n)$. Define the Kato modules $K_n := H_q(n) \otimes_{P_n} \mathfrak{m}_n \cong (H_q(n)/n_n)c_n$ to be the unique simple module in N_n, where $c_n = \sum_{w \in S_n} q^{-\ell(w)} T_w$ for $\tau \in \{ \text{triv}, \text{sign} \}$.
- As in [Si] Proposition 3.3, for any $U \in \mathcal{C}$ and $n > 0$, $E^n(U)$ has a natural left $H_q(n)$-module structure. It induces a morphism $\gamma_n : H_q(n) \to \text{End}(E^n)$, which is an isomorphism $B_i,n \cong \text{End}(E^n)$. Moreover, it induces an isomorphism $B_i,n \cong \text{End}(E^n)$.
- Given $d \geq 0$, let $\mathcal{C} \leq d$ be the Serre subcategory of \mathcal{C} consisting of all simple objects S such that $d(S) \leq d$. Clearly $[\mathcal{C} \leq d] \subseteq [\mathcal{C}]_{\leq d}$.

1.2. Simples in \mathcal{C}. In this subsection, we focus on the categorical action of E and F on a simple object S in \mathcal{C}. In general, $E S$ and $F S$ (or more generally, $E(i) S$ and $F(i) S$) are not necessarily simple, but their socles and heads are.

Also we prove some results describing $\text{End}(E(i) S)$.

The following result is due to Chuang-Rouquier [CR] Proposition 5.20.

Proposition 1.1. Let S be a simple object of \mathcal{C}, and let $n = h_+(S)$. Then, for every $i \leq n$:

(a) The object $E(i) S$ is simple.
(b) The socle and the head of $E(i) S$ are isomorphic to a simple object S' of \mathcal{C}. We have $H_q(i)$-equivariant \mathcal{C}-isomorphisms: $\text{soc}(E(i) S) \cong \text{head}(E(i) S) \cong S' \otimes K_i$.
(c) The canonical homomorphism $\gamma_i(S) : H_q(i) \to \text{End}_\mathcal{C}(E(i) S)$ factors through B_i,n. Moreover, it induces an isomorphism $B_i,n \cong \text{End}_\mathcal{C}(E(i) S)$.

(d) We have $[E(i)(S)] - (n_i[S']) \in [\mathcal{C}]_{\leq d(S')}^{-1}$.

The corresponding statements with E replaced by F and $h_+(S)$ by $h_-(S)$ hold as well.

To prove the proposition, we need the following two lemmas.
Lemma 1.2. Let M be an object of C. If $d(S) \geq r$ for any simple subobject (resp. quotient) S of M, then $d(S') \geq r$ for any simple subobject (resp. quotient) of EM or FM.

Proof. By the weight decomposition of C ([Sl Proposition 3.5]), it is enough to consider the case where M lies in a single weight space. Let T' be a simple submodule of EM, by adjunction, $\text{Hom}(FT, M) \cong \text{Hom}(T, EM) \neq 0$. So there exists S being a simple submodule of M that is a composition factor of FT. Hence, $d(T) \geq d(FT) \geq d(S) \geq r$. The proofs for FM and simple quotients are similar. □

For $1 \leq i \leq j \leq n$, denote by $G_{[i,j]}$ the symmetric group on $[i, j] = \{i, i + 1, \ldots, j\}$. We define similarly $G_{q_{[i,j]}}$ and $\mathcal{H}_{q_{[i,j]}}$ and we put $c_{[i,j]} = \sum_{w \in G_{[i,j]}} q^{-\ell(w)\tau}(T_w)T$.

Lemma 1.3. The $G_{q_{[i,j]}}$-module $c_{[i+1,j]}EF$ has a simple socle and head.

Proof. See [CR] Lemma 3.6, or [Ve] Theorem 5.10. □

Proof of Proposition 1.1. The proof is in several steps.

Step 1. (a) holds when $FS = 0$. Since $[E]$, $[F]$ define an SL-action on $[C]$, $[F(n)]E(n)S = rS$ for some $r \in \mathbb{Z}_{>0}$. By adjointness, $\text{Hom}(F^{(n)}E^{(n)}S, S) = \text{Hom}(E^{(n)}S, E^{(n)}S) \neq 0$. So there exists a nonzero homomorphism $F^{(n)}E^{(n)}S \to S$, hence an isomorphism. Then $F^{(n)}E^{(n)}S \cong S$. If $E^{(n)}S$ has at least two composition factors, then by weight consideration, $F^{(n)}E^{(n)}S$ also has at least two composition factors, and thus cannot be simple. So $E^{(n)}S = S'$ must be simple.

Step 2. (a) holds in general. Let L be a simple quotient of $F^{(r)}S$, where $r = \dim(S)$. Note that, by our choice of r, $FL = 0$ so, by Step 1, $E^{(n+r)}L = T$ is simple and $E^{(n)}E^{(r)}L = (^{n+r})T$. By adjunction, we have that $\text{Hom}(S, E^{(n)}L) \cong \text{Hom}(F^{(r)}S, L) \neq 0$, so S must be a subobject of $E^{(n)}L$. It follows that $E^{(n)}S$ must be a subobject of $(^{r})T$. So $E^{(n)}S = mT$ for some $m > 0$. Clearly, $m = \dim\text{Hom}(E^{(n)}S, T) = \dim\text{Hom}(S, E^{(n)}T)$. But $ET = 0$, so by Step 1 (with E and F swapped) $\text{soc}(F^{(n)}T)$ is simple. Thus, $m = 1$.

Step 3. (b) holds whenever (a) does. Clearly, (b) holds when $i = n$. But let us observe a bit more. We have $E^{n}S = n!S'$ for some simple module S'. Thus, $E^{n}S = S' \otimes R$ for some left $G_{q_{[1,n]}}$-module R in N_n. Since $\dim R = n! = \dim K_n$, we must have $R = K_n$.

For $i < n$ we have, using exactness of E and the above paragraph, that $E^{n-i}S \otimes K_{n-i}c_{[1,n]}^1$. The $G_{q_{[n-i]}}$-module $K_{n-i}c_{[1,n]}^1$ has a simple head and socle, (Lemma 1.3), so the same is true for $S'' \otimes K_{n-i}c_{[1,n]}^1$ (as a $G_{q_{[n-i]}}$-module in C). It follows that $E^{n-i}S \otimes K_{n-i}c_{[1,n]}$ is indecomposable as a $G_{q_{[n-i]}}$-module in C. Now, if S' is a nonzero summand of $E^{(n)}S$, then $E^{n-i}S' \neq 0$ (Lemma 1.2). So $\text{soc}(E^{(n)}S)$ has no more than one summand and hence must be simple. We have $\text{soc}(E^{(n)}S) \cong S' \otimes R$ for some $G_{q_{[n-i]}}$-module R in N_i. Since $\dim R = i!$, it follows that $R \cong K_i$, $\text{soc}(E^{(n)}S) = S'$. The proof for the head being simple is similar. It remains to show that the head and the socle are isomorphic.

Step 4. Estimating the dimension of $\text{End}(E^{(n)}S)$. Since $S' = \text{soc}(E^{(n)}S)$ is simple, the dimension of $\text{Hom}(M, E^{(n)}S)$ is at most the multiplicity of S' in M. Taking $M = E^{(n)}S$, we get that the dimension of $\text{End}(E^{(n)}S)$ is at most the multiplicity of S' in $E^{(n)}S$. Since $E^{(n-i)}S' \neq 0$, we have that the dimension of $\text{End}(E^{(n)}S)$ is at most the number of composition factors of $E^{(n-i)}E^{(n)}S$. But $E^{(n-i)}E^{(n)}S = (^n)S''$. Thus, dim(End$(E^{(n)}S)) \leq (^n)$. Since $E^{(n)}S = n!E^{(n)}S$, it follows that dim(End$(E^{(n)}S) \leq (i!^2 (n)) = \dim B_{i,n}$.

Step 5. (c) holds whenever (a) holds. ker$\gamma_n(S) \subseteq n_{q_{[1,n]}}$ since the former is a proper ideal and the latter is a maximal ideal of $H_{q_{[1,n]}}$. For $i < n$, we have that ker$\gamma_i(S) \subseteq H_{q_{[1,i]}}(i) \cap \text{ker} \gamma_n(S) \subseteq H_{q_{[1,i]}}(i) \cap (n_{q_{[1,i]}})$. Then, we have an induced surjective map im$\gamma_i(S) \to B_{i,n}$. By Step 4 (that was done under the assumption that (a) holds) this must be an isomorphism and $\gamma_i(S)$ must be surjective.

Step 6. (d) holds whenever (a) holds. In Step 4 we also get that the multiplicity of S' as a composition factor of $E^{(n)}S$ is $^{(n)}$. If L is a composition factor of $E^{(n)}S$ with $E^{(n-i)}L \neq 0$, then $L \cong S'$. And since the multiplicity of head$(E^{(n)}S)$ in $E^{(n)}S$ is also $^{(n)}$ and head$(E^{(n)}S)$ is not killed by $E^{(n-i)}$, head$(E^{(n)}S) \cong S' \cong \text{soc}(E^{(n)}S)$. Now we also finish the proof of (b) and we are done. □

Take $i = 1$ in the proposition above, we get a map

\[(1) \quad \hat{c} : \text{Irr}C \to \text{Irr}C \cup \{0\}, \quad S \mapsto \text{soc}(ES) = \text{head}(ES),\]
and similarly
\[\tilde{f} : \text{Irr} \mathcal{C} \to \text{Irr} \mathcal{C} \cup \{0\}, \quad S \mapsto \text{soc}(FS) = \text{head}(FS). \]
Note that if \(ES = 0 \) then \(\hat{c}(S) = \text{soc}(ES) = 0; \) if \(\hat{c}(S) \neq 0 \), we have \(\tilde{f} \hat{c}S = S \).

2. BERENSTEIN-KAZHDAN PERFECT BASES

In this section we introduce the Berenstein-Kazhdan perfect bases. A \(g \)-module, a basis is perfect in the sense that it behaves nicely under the action of Chevalley generators. It equips the \(g \)-module with a crystal structure, which was first defined by Kashiwara using quantum groups. The main reference of this section is \([BK, \text{Section 5}]\).

Let \(I \) be a finite set of indices. Let \(\Lambda \) be a lattice and \(\Lambda' = \Lambda^* \) be its dual lattice, and let \(\{ \alpha_i : i \in I \} \) be a subset of \(\Lambda \) and \(\{ \alpha_i^\vee : j \in I \} \) be a subset of \(\Lambda'^* \). Denote by \(g \) the Kac-Moody algebra associated to the Cartan matrix \(A = (a_{ij})_{i,j \in I} \) with \(a_{ij} = \langle \alpha_i, \alpha_j^\vee \rangle \), where \(\langle \cdot, \cdot \rangle \) is the evaluation pairing. Also denote by \(e_i, f_i, h_i \in I \) the Chevalley generators of \(g \). We say a \(g \)-module \(V \) is an integrable highest weight module if:

- \(V \) admits a weight decomposition \(V = \bigoplus V_\lambda \) and the weights are bounded above.
- \(e_i \) and \(f_i \) act locally nilpotently for \(i \in I \), i.e., for any \(v \in V \) and any \(i \in I \), there exists an integer \(N \) such that \(e_i^N(v) = 0 \) and \(f_i^N(v) = 0 \).

For a non-zero vector \(v \in V \) and \(i \in I \), denote by \(h_i(v) \) the smallest positive integer \(j \) such that \(e_i^{j+1}(v) = 0 \) and we use the convention \(h_i(0) = -\infty \) for \(v = 0 \). Similarly \(h_i^-(v) = \min \{ j \in \mathbb{Z} : f_i^{j+1}(v) = 0 \} \). Further, denote \(d_i(v) := h_i^+(v) + h_i^-(v) + 1 \) to be the maximal dimension of the irreducible \(sl_2 \)-submodule in \(U(g) v \), where \(g_i \) is the subalgebra of \(g \) generated by \(e_i, f_i \) and \(h_i = [e_i, f_i] \).

For each \(i \in I \) and \(d \geq 0 \), define the subspace
\[V_{i < d} := \{ v \in V : d_i(v) < d \}. \]
We say that a basis \(B \) of a integrable highest weight \(g \)-module \(V \) is a weight basis if \(B \) is compatible with the weight decomposition, i.e., \(B_\lambda := V_\lambda \cap B \) is a basis of \(V_\lambda \) for any \(\lambda \) being a weight of \(V \).

Definition 2.1. We say that a weight basis \(B \) in an integrable highest weight \(g \)-module \(V \) is perfect if for each \(i \in I \) there exist maps \(\hat{e}_i, \hat{f}_i : B \to B \cup \{0\} \) such that \(\hat{e}_i(b) \in B \) if and only if \(e_i(b) \neq 0 \), and in the latter case on has
\[e_i(b) \in \mathbb{C}^x \cdot \hat{e}_i(b) + V_{i < d_i(b)}; \]
and \(\hat{f}_i(b) \in B \) if and only if \(f_i(b) \neq 0 \), and in the latter case on has
\[f_i(b) \in \mathbb{C}^x \cdot \hat{f}_i(b) + V_{i < d_i(b)}. \]
We refer to a pair \((V, B)\), where \(V \) is an integrable highest weight \(g \)-module and \(B \) is a perfect basis of \(V \), as a based \(g \)-module.

Denote by \(V^+ \) the space of the highest weight vectors of \(V \):
\[V^+ = \{ v \in V : e_i(v) = 0, \forall i \in I \}. \]
Denote \(B^+ := B \cap V^+ \). Then we have the following result.

Proposition 2.2. For any perfect basis \(B \) for \(V \), the subset \(B^+ \) is a basis for \(V^+ \).

Proof. For \(v \in V^+ \), \(e_i(v) = 0 \) for all \(i \in I \). \(B \) is a basis of \(V \), so \(v = \sum_{b \in B} \alpha_b b \) with \(\alpha_b \in \mathbb{C} \). Therefore
\[e_i(v) = \sum_{b \in B} \alpha_b e_i(b) = \sum_{b \in B, e_i(b) \neq 0} \alpha_b e_i(b) = 0. \]
\(B \) is perfect so by equation (3), if \(e_i(b) \neq 0 \) then for some \(x_b \in V_{i < d_i(b)} \) and \(\beta_b \in \mathbb{C}^x \),
\[e_i(b) = \beta_b \hat{e}_i(b) + x_b. \]
Hence
\[\sum_{b \in B, e_i(b) \neq 0} (\alpha_b \beta_b \hat{e}_i(b) + \alpha_b x_b) = 0. \]
Take \(n = \max \{ h_i^+(\hat{e}_i(b)) : b \in B, e_i(b) \neq 0 \} \) and \(B_n := \{ b \in B : \alpha_b \neq 0, h_i^+(\hat{e}_i(b)) = n \} \). Then
\[e_i^n(e_i(v)) = 0 = \sum_{b \in B_n} \alpha_b \beta_b e_i^n(\hat{e}_i(b)). \]
Note that for any \(b \in B_n \), \(\beta_b \neq 0 \) and \(e_i^n(\hat{e}_i(b)) \neq 0 \). So \(\alpha_b = 0 \) and \(B_n \) is empty. So for any \(b \in B \) such that \(\alpha_b \neq 0 \), \(h_i^+(\hat{e}_i(b)) = 0 \). So \(h_i^+(\hat{e}_i(b)) = 0 \) and \(b \in B^+ \). \(\square \)
3. Perfect basis in $[\mathcal{C}]$

Recall from [Si] Section 2.5, if given $q \neq 1$ being a primitive lth-root of unity in \mathbb{F} and $q = (q_0, \cdots, q_{l-1}) \in \mathbb{F}^l$ with $q_i = q^{k_i}$ for $k_i \in \mathbb{Z}/l\mathbb{Z},$ we can construct an $\widehat{\mathfrak{sl}_l}$-categorification on $\mathcal{C} = \bigoplus_{n \geq 0} H_n - \text{mod}$, where $H_n = H_{n,q}(q(n))$ denotes the cyclotomic Hecke algebra, which is the quotient of the affine Hecke algebra $H^\text{aff}_n(n)$ by the extra relation $(X_1 - q_0) \cdots (X_1 - q_{l-1}) = 0$ (which is also called a cyclotomic polynomial). The categorification data is given as follows:

- The biadjoint endofunctors $E = \bigoplus \text{Res}_{n+1}^l$ and $F = \bigoplus \text{Ind}_{n+1}^l$, with the decompositions $E = \bigoplus_{i=0}^{l-1} E_i$ and $F = \bigoplus F_i$, where E_i is the i-Restriction and F_i is the i-Induction, defined in [Si] Section 2.4.
- $L = \bigoplus L_n \in \text{End}(E)$ with L_n denoting the n-th Jucys-Murphy element in H_n.
- $T = \bigoplus T_{n-1} \in \text{End}(E^2)$ with $T_{n-1} \in H_n$ being a particular generator of the cyclotomic Hecke algebra.

For $i = 0, \cdots, l - 1$, $[E_i]$ and $[F_i]$ define a \mathfrak{sl}_2-action on $[\mathcal{C}] = K_0(\mathcal{C}) \otimes \mathbb{C}$. It is mentioned in [Si] Proposition 3.4 that we have the weight decomposition $\mathcal{C} = \bigoplus \mathcal{C}_\lambda$, where \mathcal{C}_λ is the full subcategory of \mathcal{C} consisting of objects whose class is in the weight space $[\mathcal{C}]_\lambda$.

The reason why we are interested in crystals is that the categorical $\widehat{\mathfrak{sl}_l}$ action on \mathcal{C} gives rise to a canonical crystal structure on the set $\text{Irr}\mathcal{C}$ of simple objects in \mathcal{C}. In this section, we are going to construct a perfect basis for the $\widehat{\mathfrak{sl}_l}$-module $[\mathcal{C}]$ using results in Proposition [1.1] and deduce that $[\mathcal{C}]$ is an irreducible $\widehat{\mathfrak{sl}_l}$-module.

Denote $V = [\mathcal{C}]$. According to the weight decomposition, V is an integrable highest weight \mathfrak{g}-module. Take the basis B of $V = [\mathcal{C}]$ consisting of classes of all simple objects. Similarly to Equation (1) and (2), we can define maps $\tilde{e}_i, \tilde{f}_i : \text{Irr}\mathcal{C} \rightarrow \text{Irr}\mathcal{C} \sqcup \{0\}$ for $i \in I$. Note that for a simple object S in \mathcal{C}, $\tilde{e}_i(S) = 0$ if and only if $\text{soc } E_i(S) = 0$, iff and only if $E_iS = 0$, i.e., $e_i[S] = 0$. Together with Proposition [1.1], we see that \tilde{e}_i, \tilde{f}_i are maps satisfying conditions (3) and (4), so $B = \text{Irr}\mathcal{C}$ is a perfect basis of V and (V, B) is a based \mathfrak{g}-module.

Now consider the basis B^+ of the space of highest weight vectors. $[S] \in B^+$ means that S is simple and $\tilde{e}_i([S]) = 0$ for all $i \in I$. Then $e_i[S] = 0$, which means exactly $E_iS = 0$ for all $i \in I$. So $ES = \bigoplus E_iS = 0$, i.e., $\text{res}^n S = 0$ for all $n \geq 0$. The only simple S in \mathcal{C} is a simple H_0-module. Since $H_0 = \mathbb{F}$, so $S \simeq \mathbb{F}$ is unique up to isomorphism. $[S]$ is the unique (up to scalar) highest weight vector in V. Therefore V is irreducible.

References

[Si] J. Simental, Introduction to type A categorical $\mathfrak{Kac-Moody}$ actions. Notes for this seminar.