NOVEL ANTENNA DESIGNS FOR COMPACT GROUND PENETRATING RADAR SYSTEMS AND IN-TRAFFIC AIR-COUPLED APPLICATIONS

Ming Li1, Reid Vilbig1, Dan Busuioc2, Ralf Birken1, and Ming Wang1

1Department of Civil Engineering, Northeastern University, Boston, MA
2DBC Group, Boston, MA

This work was performed under the support of the U.S. Department of Commerce, National Institute of Standards and Technology, Technology Innovation Program, Cooperative Agreement Number 70NANB9H9012
Outline

• VOTERS & The Radar System Requirements
• Overview Antenna Project
• Antenna Design / Development
• Antenna Characteristics
• Testing
VOTERS attempts to shift roadway and bridge deck maintenance away from periodical localized mainly visual inspections to continuous network-wide health monitoring.

Versatile Onboard Traffic-Embedded Roaming Sensors
VOTERS Concept

Vehicles of Opportunity
- Roaming around a city
- Going about their usual business
- Mounted VOTERS System
- Autonomous of driver
- Wireless connection to Control Center

• Vehicles of Opportunity collect Sensor Data containing Surface and Subsurface Roadway and Bridge Deck Condition Information at Traffic Speed
• Accurately register all data geographically and in time
• Data are transferred to a Control and Visualization Center for further analysis, visualization, and decision making
VOTERS Concept

- In order to do this we need to design and build appropriate sensing systems that can operate under those circumstances.

- We’re focusing on GPR now.
VOTERS Radar System Requirements

• Requirements for the VOTERS System
 – air-coupled
 – road-speed GPR system
 – multiple channel array - spanning the width of the vehicle
 – FCC compliant to receive certification.
Radar System Requirements

• FCC Emissions Mask
 – Specification FCC 02-48
VOTERS Radar System Requirements

• Partnered with ESS (Earth Science Systems) to build the RADAR electronics (talk at 9:30)
 – Road way speeds
 – High density spatial sampling
 – Array Capabilities

• Northeastern University was tasked to research suitable antennas
 – Development and integration with the new system
Outline

• VOTERS & The Radar System Requirements
• Overview Antenna Project
• Antenna Design / Development
• Antenna Characteristics
• Testing
Antenna Project Overview

- Designed and fabricated 5 new antennas
- 4 have been completed and tested
- Our goal is to pick the best antenna for the VOTERS application
Antenna Project Overview

- Frequency range
 - 1.5-3.5GHz
- Gain
 - 3-10dB
- Size
 - Under vehicle array
- Price
 - Economical
- Beamwidth
 - 40°-100°
- Polarization
 - Linear
- Input matching
 - S11 below -10dB (90% power radiated)
Outline

• VOTERS & The Radar System Requirements
• Overview Antenna Project
• Antenna Design / Development
• Antenna Characteristics
• Testing
Antenna Design / Development

• Flow Chart

• Antenna
 – Form Factor
 • Frequency Domain Modeling
 – 3D FEM –HFSS Software
 • Time Domain Modeling
 – 2D MOM –Momentum Software

• Board layout
 – Electrical feeding
 – Connectors
 – Packaging
 • Circuit Simulation
 – Circuit simulator –ADS
 – S-parameter block cascading analysis

• Fabricate & Measure
 – In lab testing of antenna
Antenna Design / Development

• Down Selections
 – Equi-angular spiral, conical spiral, log periodic antenna and other self-complementary structures
 • Poor time domain responses have restricted their application
 • Insufficient bandwidth
 – Horn antennas
 • Dimensions are too large for the under-vehicle mounting or deployment in a dense array
 – Resistively Loaded
 • Reduces ringing, but also reduces gain
Antenna Design / Development

- Incorporated Designs
 - Backed cavity (bowtie)
 - Unidirectional radiation with high gain
- Microstrip feeding
 - Common PCB design
Antenna Design / Development

• Incorporated Designs
 – Vivaldi
 • High gain, unidirectional
 – Bowtie
 • Low profile
Outline

• VOTERS & The Radar System Requirements
• Overview Antenna Project
• Antenna Design / Development
• Antenna Characteristics
• Testing
Antenna Characteristics

• Antenna parameters are measured using a network analyzer for the S11 parameters within an anechoic chamber

• Equipment parameters are post-measurement to extract only the antenna parameters
Antenna Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded Bowtie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cavity-backed, rubber absorber)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 cm x 14 cm x 3.9 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slotted Bowtie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cavity-backed, foam absorber)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7 cm x 7 cm x 5 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imego Vivaldi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2 cm x 15 cm (length)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Antenna Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivaldi-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 cm x 14 cm (length)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivaldi-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm x 18 cm (length)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imego Vivaldi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2 cm x 15 cm (length)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

• VOTERS & The Radar System Requirements
• Overview Antenna Project
• Antenna Design / Development
• Antenna Characteristics
• Testing
Antenna Testing

- Pulse center frequency
 - 2.5 GHz

- Bandwidth
 - 3 GHz

- The test bed dimensions
 - 4 x 2 x 0.6 ft.

- Antenna height above test bed
 - 12 in

- Data collection rate
 - 1 scan/in
Antenna Testing

Rounded Bowtie Slotted Bowtie Vivaldi - 1 Vivaldi - 2 Commercial Vivaldi

Time Domain Response

Antenna Sand Surface Rebar Sand Floor/Metal Plate

12" 2" 6"
Antenna Testing

- Metal Bar
- Metal Sheet
- Air above sand
- Sand Box
Antenna Testing

<table>
<thead>
<tr>
<th>Type</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded Bowtie</td>
<td></td>
</tr>
<tr>
<td>Slotted Bowtie</td>
<td></td>
</tr>
<tr>
<td>Vivaldi - 1</td>
<td></td>
</tr>
<tr>
<td>Vivaldi - 2</td>
<td></td>
</tr>
<tr>
<td>Commercial Vivaldi</td>
<td></td>
</tr>
</tbody>
</table>

Time Domain Response

- **Antenna**: 12"
- **Sand Surface**: 6"
- **Rebar**: 2"
- **Sand Floor/Metal Plate**: 6"

![Graph](image6.png)
Conclusion

• 2 Bowties and 2 Vivaldis were characterized
• Qualitatively tested over a sandbox
• The measured performance of the antennas along with the prototype GPR system illustrate the feasibility of using them for air-coupled, vehicle-based GPR applications.
• All of these antennas seem suited for the VOTERS application
Outlook

• Future work
 – Use latest version ESS with distance trigger capability
 – Testing over bridge decks
 – Select best antenna for Integration with other VOTERS systems on the VOTERS van
 – Implementation as an array which spans the entire width of the vehicle
Thank You

Reid Vilbig
Vilbig.r@husky.neu.edu