Accelerated Artificial Corrosion Monitoring of Reinforced Concrete Slabs Using the Half-Cell Potential Method

Justin Wilson a and Tzu-Yang Yu b

a Master's Student
b Assistant Professor, Ph.D.
Department of Civil and Environmental Engineering
University of Massachusetts Lowell
Overview

- Motivation and Objective
- Experimental Approach
 - Accelerated corrosion test
 - Data collection
- Results
 - Data modeling
- Conclusions
- Acknowledgements
- References
Motivation and Objective

• Why Monitor Corrosion?
 – Corrosion affects the service life of concrete structures
 – Corrosion is inevitable
 – Many structures were built with unprotected rebar

• Half-Cell Potential
 – Standardized test
 – Proven Reliability

(Source: www.fhwa.dot.gov)
Motivation and Objective

Case: MA Route 6A over Scorton Creek
Sandwich, MA

Cracking to Interior Beam at Midspan
Spalling of South Exterior Beam
Motivation and Objective

Goals

- Determine how the spatial distribution of half-cell potential (HCP) measurements on Reinforced Concrete (RC) slabs change in time
- Perform a visual inspection to validate the results
- Develop parameters for the distribution of HCP in the time domain
- Compare the HCP data at varying concrete covers to an non-ponded RC slab in the same environment
Experimental Approach
Experimental Approach

Concrete Laboratory, CEE, UMass Lowell
Experimental Approach

- Adapted version of the Modified Southern Exposure Test [2]
- Controlled environment
 - Relative humidity kept to 50%
 - Temperature 73°F when ponding
 - Temperature 100°F when drying
- Slabs ponded in weekly cycles for 52 weeks
 - 4 days of ponding
 - 3 days of drying
- Slabs covered with a tarp to keep conditions constant
Experimental Approach

Specifications

- Elcometer 331² Model H
- Ag/AgCl reference electrode
- Readings corrected to Cu/CuSO₄ values
- Test specification
 – ASTM C678 - 09
- Procedure similar to the Modified Southern Exposure Test

Elcometer 331² ® Model H & HM Half Cell Meter
Source: www.elcometer.com
Experimental Approach

Factors Affecting HCP Measurement

- **Concrete Cover**
 - Influences the rate of corrosion

- **Location of Measurement**
 - Least resistivity when measurements are taken directly over the bars

- **Water Content**
 - Affects the resistivity of the concrete

- **Atmospheric Conditions**
 - Affects the water content of the slab
Results - Slab 1

Concrete Laboratory, CEE, UMass Lowell (Week 52)
Results – Slab 1

S1-1

HCP = -530 mV

Concrete Laboratory, CEE, UMass Lowell
(Week 52)
Results – Slab 1

S1-2

HCP = -501 mV

Concrete Laboratory, CEE, UMass Lowell
(Week 52)

S1-3

HCP = -422 mV
Contour maps were as expected for Slab 1
HCP Contour Maps

(Slab 2)

Half Cell Potentials: Slab 2

Slab 2 shows lower HCP at the front of the slab.

-Spatial location of the point of measurement is important.
HCP Contour Maps

Slab 3 shows more corrosion with areas of less concrete cover
–Variations in concrete cover affect HCP
The contour map for Slab 4 was as expected—it shows minor variations across the entire slab.
Average HCP vs. Time

Graphical Representation

![Graphical Representation of Average HCP vs. Time](image-url)
Observations

- All Slabs show an increase until Week 14
 - Residual pore water
- Slab 2 stays fairly constant after Week 28
 - About (-140 mV)
- Slab 3 shows more variability than Slab 2, but stays relatively constant after Week 24
 - About (-240 mV)
- Slab 4 is more noisy than the minimum values
Average HCP vs. Time

Model Parameters

The model equation is given by:

$$HCP(t) = P_1 t^4 + P_2 t^3 + P_3 t^2 + P_4 t + P_5$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Slab 1</th>
<th>Slab 2</th>
<th>Slab 3</th>
<th>Slab 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>3.399e-4</td>
<td>-3.614e-5</td>
<td>-4.226e-5</td>
<td>-3.736e-4</td>
</tr>
<tr>
<td>P_3</td>
<td>0.6127</td>
<td>-0.2572</td>
<td>-0.8518</td>
<td>-1.725</td>
</tr>
<tr>
<td>P_4</td>
<td>2.375</td>
<td>7.219</td>
<td>24.43</td>
<td>25.23</td>
</tr>
<tr>
<td>P_5</td>
<td>-280.2</td>
<td>-247.3</td>
<td>-485.4</td>
<td>-263</td>
</tr>
<tr>
<td>R^2</td>
<td>0.98</td>
<td>0.91</td>
<td>0.66</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Minimum HCP vs. Time

Graphical Representation

Minimum HCP Measurements (as of week 52)

- Minimum HCP (mV)
- Time (weeks)

Legend:
- Slab 1, 1.5"
- Slab 2, 2"
- Slab 3, 2"
- Slab 4, 1.5"
Observations

- Slab 1 shows an expected, decreasing trend
- Slab 2 stays fairly constant throughout the entire experiment (-180 mV)
- Slab 3 dips sharply at the start, but remains constant afterward (-550 mV)
 - Possible excess mix water trapped in slab
- Slab 4 stays constant throughout the first 30 weeks, but rises afterwards (-120 mV)
 - Possible indicator of background noise
Minimum HCP vs. Time

Model Parameters

\[HCP(t) = P_1 t^4 + P_2 t^3 + P_3 t^2 + P_4 t + P_5 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Slab 1</th>
<th>Slab 2</th>
<th>Slab 3</th>
<th>Slab 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>-3.722e-4</td>
<td>1.575e-5</td>
<td>1.860e-5</td>
<td>-5.037e-4</td>
</tr>
<tr>
<td>(P_2)</td>
<td>6.16e-2</td>
<td>9.032e-4</td>
<td>-2.116e-3</td>
<td>5.574e-2</td>
</tr>
<tr>
<td>(P_3)</td>
<td>-3.21</td>
<td>-0.1928</td>
<td>0.1145</td>
<td>-1.988</td>
</tr>
<tr>
<td>(P_4)</td>
<td>49.05</td>
<td>6.771</td>
<td>-4.405</td>
<td>26.21</td>
</tr>
<tr>
<td>(P_5)</td>
<td>-377.8</td>
<td>-234.4</td>
<td>-451.9</td>
<td>-261.5</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.97</td>
<td>0.46</td>
<td>0.31</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Effect of Concrete Cover

1.5” Concrete Cover

Slab 1 (Week 52) Slab 4 (Week 52)

47.1% Decrease in Average HCP 53.2% Increase in Average HCP
Effect of Concrete Cover

2” Concrete Cover

Slab 2 (Week 52)

Slab 4 (Week 52)

41.1% Increase in Average HCP

50.2% Increase in Average HCP
Conclusions

- Concrete cover is the most important factor determining the rate of corrosion
- Visual inspection validates the experimental results
 - Corrosion observed at the points of lowest HCP
- Data collected on Slab 4 can be used to determine the level of noise in HCP measurements
 - Further analysis required to denoise the data
Acknowledgements

- Financial Support from National Institute of Standards and Technology (NIST) Technology Innovation Program (TIP) and Prof. Ming Wang from Northeastern University through the Vehicle Onboard Traffic Embedded Roaming Sensors Project (VOTERS)
- The authors would also like to thank Carlos Jaquez, Hao Liu, and Ross Gladstone of UMass Lowell for their help in collecting HCP data
References

Thank You for your attention

Questions?