HYPERPLANE ARRANGEMENTS AND
MILNOR FIBRATIONS

Alex Suciu

Northeastern University

Workshop on Computational Geometric Topology in Arrangement Theory
ICERM, Brown University

July 8, 2015
Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^ℓ.

For each $H \in \mathcal{A}$, let $f_H: \mathbb{C}^\ell \to \mathbb{C}$ be a linear form with kernel H.

For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

The map $Q_m: \mathbb{C}^\ell \to \mathbb{C}$ restricts to a map $Q_m: M(\mathcal{A}) \to \mathbb{C}^*$.

This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (\mathcal{A}, m),

$$F_m(\mathcal{A}) \xrightarrow{Q_m} M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$
Let \(\mathcal{A} \) be a (central) hyperplane arrangement in \(\mathbb{C}^\ell \).

For each \(H \in \mathcal{A} \), let \(f_H: \mathbb{C}^\ell \to \mathbb{C} \) be a linear form with kernel \(H \).

For each choice of multiplicities \(m = (m_H)_{H \in \mathcal{A}} \) with \(m_H \in \mathbb{N} \), let

\[
Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H},
\]

a homogeneous polynomial of degree \(N = \sum_{H \in \mathcal{A}} m_H \).

The map \(Q_m: \mathbb{C}^\ell \to \mathbb{C} \) restricts to a map \(Q_m: M(\mathcal{A}) \to \mathbb{C}^* \).

This is the projection of a smooth, locally trivial bundle, known as the \textit{Milnor fibration} of the multi-arrangement \((\mathcal{A}, m) \),

\[
F_m(\mathcal{A}) \xrightarrow{Q_m} M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.
\]
- The typical fiber, $F_m(\mathcal{A}) = Q_m^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.

- $F_m(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\gcd(m)$ connected components, of dim $\ell - 1$.

- The (geometric) monodromy is the diffeomorphism
 \[
 h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.
 \]

- If all $m_H = 1$, the polynomial $Q = Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.
The typical fiber, \(F_m(\mathcal{A}) = Q_m^{-1}(1) \), is called the \textit{Milnor fiber} of the multi-arrangement.

\(F_m(\mathcal{A}) \) is a Stein manifold. It has the homotopy type of a finite cell complex, with \(\gcd(m) \) connected components, of \(\dim \ell - 1 \).

The \textit{(geometric) monodromy} is the diffeomorphism

\[
h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.
\]

If all \(m_H = 1 \), the polynomial \(Q = Q(\mathcal{A}) \) is the usual defining polynomial, and \(F(\mathcal{A}) \) is the usual Milnor fiber of \(\mathcal{A} \).
The typical fiber, $F_m(\mathcal{A}) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.

$F_m(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\gcd(m)$ connected components, of dim $\ell - 1$.

The *(geometric) monodromy* is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

If all $m_H = 1$, the polynomial $Q = Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.
Example

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$-roots of 1.

Example

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^2, then $F(\mathcal{A})$ is a Riemann surface of genus $\left(\frac{n-1}{2}\right)$, with n punctures.
Example

Let \(\mathcal{A} \) be the single hyperplane \(\{0\} \) inside \(\mathbb{C} \). Then \(M(\mathcal{A}) = \mathbb{C}^* \), \(Q_m(\mathcal{A}) = z^m \), and \(F_m(\mathcal{A}) = m \)-roots of 1.

Example

Let \(\mathcal{A} \) be a pencil of 3 lines through the origin of \(\mathbb{C}^2 \). Then \(F(\mathcal{A}) \) is a thrice-punctured torus, and \(h \) is an automorphism of order 3:

More generally, if \(\mathcal{A} \) is a pencil of \(n \) lines in \(\mathbb{C}^2 \), then \(F(\mathcal{A}) \) is a Riemann surface of genus \(\binom{n-1}{2} \), with \(n \) punctures.
Example

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$-roots of 1.

Example

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^2, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.
Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(Q_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m(\mathcal{A})} \mathbb{C}^*$$

$$F_m(\mathcal{B}_n) \longrightarrow M(\mathcal{B}_n) \xrightarrow{Q_m(\mathcal{B}_n)} \mathbb{C}^*$$

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$
Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(Q_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be an essential arrangement. The inclusion $\iota : M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

$$\begin{array}{ccc}
F_m(\mathcal{A}) & \longrightarrow & M(\mathcal{A}) \\
\downarrow & & \downarrow \iota \\
F_m(\mathcal{B}_n) & \longrightarrow & M(\mathcal{B}_n)
\end{array}$$

$$\begin{array}{ccc}
M(\mathcal{A}) & \stackrel{Q_m(\mathcal{A})}{\longrightarrow} & \mathbb{C}^* \\
\downarrow & & \downarrow \\
M(\mathcal{B}_n) & \stackrel{Q_m(\mathcal{B}_n)}{\longrightarrow} & \mathbb{C}^*
\end{array}$$

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$
Some basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups $H_q(F_m(A), \mathbb{k})$ determined by $L(A)$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(A), \mathbb{k}) \to H_q(F_m(A), \mathbb{k})$, also determined by $L(A)$?

(Q2) Are the homology groups $H_q(F_m(A), \mathbb{Z})$ torsion-free? If so, does $F_m(A)$ admit a minimal cell structure?

(Q3) Is $F_m(A)$ a (partially) formal space?
The homology of the Milnor fiber

Some basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups $H_q(F_m(A), k)$ determined by $L(A)$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(A), k) \to H_q(F_m(A), k)$, also determined by $L(A)$?

(Q2) Are the homology groups $H_q(F_m(A), \mathbb{Z})$ torsion-free? If so, does $F_m(A)$ admit a minimal cell structure?

(Q3) Is $F_m(A)$ a (partially) formal space?
Some basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups $H_q(F_m(\mathcal{A}), \mathbb{k})$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(\mathcal{A}), \mathbb{k}) \to H_q(F_m(\mathcal{A}), \mathbb{k})$, also determined by $L(\mathcal{A})$?

(Q2) Are the homology groups $H_q(F_m(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F_m(\mathcal{A})$ admit a minimal cell structure?

(Q3) Is $F_m(\mathcal{A})$ a (partially) formal space?
Let \((\mathcal{A}, m)\) be a multi-arrangement with \(\gcd\{m_H | H \in \mathcal{A}\} = 1\). Set \(N = \sum_{H \in \mathcal{A}} m_H\).

The Milnor fiber \(F_m(\mathcal{A})\) is a regular \(\mathbb{Z}_N\)-cover of \(U(\mathcal{A}) = \mathbb{P}(\mathcal{M}(\mathcal{A}))\) defined by the homomorphism

\[
\delta_m : \pi_1(U(\mathcal{A})) \to \mathbb{Z}_N, \quad x_H \mapsto m_H \mod N
\]

Let \(\hat{\delta}_m : \text{Hom}(\mathbb{Z}_N, k^*) \to \text{Hom}(\pi_1(U(\mathcal{A})), k^*)\). If \(\text{char}(k) \nmid N\), then

\[
\dim_k H_q(F_m(\mathcal{A}), k) = \sum_{s \geq 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), k) \cap \text{im}(\hat{\delta}_m) \right|
\]

This gives a formula for the polynomial \(\Delta_q(t) = \det(t \cdot \text{id} - h_*)\) in terms of the characteristic varieties of \(U(\mathcal{A})\).
Let \((\mathcal{A}, m)\) be a multi-arrangement with \(\gcd\{m_H \mid H \in \mathcal{A}\} = 1\). Set \(N = \sum_{H \in \mathcal{A}} m_H\).

The Milnor fiber \(F_m(\mathcal{A})\) is a regular \(\mathbb{Z}_N\)-cover of \(U(\mathcal{A}) = \mathbb{P}(M(\mathcal{A}))\) defined by the homomorphism

\[
\delta_m : \pi_1(U(\mathcal{A})) \to \mathbb{Z}_N, \quad x_H \mapsto m_H \pmod{N}
\]

Let \(\widehat{\delta}_m : \text{Hom}(\mathbb{Z}_N, \mathbb{k}^*) \to \text{Hom}(\pi_1(U(\mathcal{A})), \mathbb{k}^*)\). If \(\text{char}(\mathbb{k}) \nmid N\), then

\[
\dim_{\mathbb{k}} H_q(F_m(\mathcal{A}), \mathbb{k}) = \sum_{s \geq 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \mathbb{k}) \cap \text{im}(\widehat{\delta}_m) \right|
\]

This gives a formula for the polynomial \(\Delta_q(t) = \det(t \cdot \text{id} - h_*)\) in terms of the characteristic varieties of \(U(\mathcal{A})\).
Write

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(A)},$$

where $\Phi_d(t)$ is the d-th cyclotomic polynomial, and $e_d(A) \in \mathbb{Z}_{\geq 0}$.

Transfer argument: $e_1(A) = n - 1$.

If there is a non-transverse multiple point on A of multiplicity not divisible by d, then $e_d(A) = 0$. (Libgober 2002).

In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t - 1)^{m-1}(t^2 + t + 1)^{e_3}$.

If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

Example

Let A be the braid arrangement. $\mathcal{V}_1(A)$ has a single essential component, $T = \{t \in (\mathbb{C}^*)^6 \mid t_1 t_2 t_3 t_4 t_5 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1\}$. Clearly, $\delta^2 \in T$, yet $\delta \notin T$; hence, $\Delta(t) = (t - 1)^5(t^2 + t + 1)$.
Write

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the d-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

Transfer argument: $e_1(\mathcal{A}) = n - 1$.

If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_d(\mathcal{A}) = 0$. (Libgober 2002).

In particular, if \mathcal{A} has only points of multiplicity 2 and 3, then $\Delta(t) = (t - 1)^{m-1}(t^2 + t + 1)^{e_3}$.

If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

Example

Let \mathcal{A} be the braid arrangement. $\mathcal{V}_1(\mathcal{A})$ has a single essential component, $T = \{t \in (\mathbb{C}^\times)^6 \mid t_1 t_2 t_3 = t_1 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1\}$. Clearly, $\delta^2 \in T$, yet $\delta \notin T$; hence, $\Delta(t) = (t - 1)^5(t^2 + t + 1)$.

Write

\[\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(A)}, \]

where \(\Phi_d(t) \) is the \(d \)-th cyclotomic polynomial, and \(e_d(A) \in \mathbb{Z}_{\geq 0} \).

Transfer argument: \(e_1(A) = n - 1 \).

If there is a non-transverse multiple point on \(A \) of multiplicity not divisible by \(d \), then \(e_d(A) = 0 \). (Libgober 2002).

In particular, if \(A \) has only points of multiplicity 2 and 3, then

\[\Delta(t) = (t - 1)^{m-1}(t^2 + t + 1)^{e_3}. \]

If multiplicity 4 appears, then also get factor of \((t + 1)^{e_2} \cdot (t^2 + 1)^{e_4} \).

Example

Let \(A \) be the braid arrangement. \(V_1(A) \) has a single essential component,

\[T = \{ t \in (\mathbb{C}^*)^6 \mid t_1t_2t_3 = t_1t_6^{-1} = t_2t_5^{-1} = t_3t_4^{-1} = 1 \}. \]

Clearly, \(\delta^2 \in T \), yet \(\delta \notin T \); hence,

\[\Delta(t) = (t - 1)^5(t^2 + t + 1). \]
Write

$$\Delta(t) := \Delta_1(t) = \prod_{d \mid n} \Phi_d(t)^{e_d(A)},$$

where $\Phi_d(t)$ is the d-th cyclotomic polynomial, and $e_d(A) \in \mathbb{Z}_{\geq 0}$.

Transfer argument: $e_1(A) = n - 1$.

If there is a non-transverse multiple point on A of multiplicity not divisible by d, then $e_d(A) = 0$. (Libgober 2002).

In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t - 1)^{m-1}(t^2 + t + 1)^{e_3}$.

If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

Example

Let A be the braid arrangement. $\mathcal{V}_1(A)$ has a single essential component, $T = \{ t \in (\mathbb{C}^*)^6 \mid t_1 t_2 t_3 = t_1 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1 \}$. Clearly, $\delta^2 \in T$, yet $\delta \notin T$; hence, $\Delta(t) = (t - 1)^5(t^2 + t + 1)$.
Modular inequalities

Let $\sigma = \sum_{H \in A} e_H \in A^1$ be the “diagonal” vector.

Assume k has characteristic $p > 0$, and define

$$\beta_p(A) = \dim_k H^1(A, \cdot \sigma).$$

That is, $\beta_p(A) = \max \{ s \mid \sigma \in R_s^1(A, k) \}$.

$e_{ps}(A) \leq \beta_p(A)$, for all $s \geq 1$.

Theorem

1. Suppose A admits a k-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \geq k - 2$, otherwise.
2. If A admits a reduced k-multinet, then $e_k(A) \geq k - 2$.
MODULAR INEQUALITIES

Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the “diagonal” vector.

Assume k has characteristic $p > 0$, and define

$$\beta_p(\mathcal{A}) = \dim_k H^1(\mathcal{A}, \cdot \sigma).$$

That is, $\beta_p(\mathcal{A}) = \max\{s | \sigma \in \mathcal{R}_s(\mathcal{A}, k)\}$.

$$e_{ps}(\mathcal{A}) \leq \beta_p(\mathcal{A}), \text{ for all } s \geq 1.$$

Theorem

1. Suppose \mathcal{A} admits a k-net. Then $\beta_p(\mathcal{A}) = 0$ if $p \nmid k$ and $\beta_p(\mathcal{A}) \geq k - 2$, otherwise.

2. If \mathcal{A} admits a reduced k-multinet, then $e_k(\mathcal{A}) \geq k - 2$.

Modular inequalities

- Let \(\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1 \) be the “diagonal” vector.
- Assume \(k \) has characteristic \(p > 0 \), and define
 \[
 \beta_p(\mathcal{A}) = \dim_k H^1(\mathcal{A}, \cdot \sigma).
 \]
 That is, \(\beta_p(\mathcal{A}) = \max\{ s \mid \sigma \in R_s(\mathcal{A}, k) \} \).

\(e_p^s(\mathcal{A}) \leq \beta_p(\mathcal{A}), \) for all \(s \geq 1 \).

Theorem

1. *Suppose \(\mathcal{A} \) admits a \(k \)-net. Then \(\beta_p(\mathcal{A}) = 0 \) if \(p \nmid k \) and \(\beta_p(\mathcal{A}) \geq k - 2 \), otherwise.*
2. *If \(\mathcal{A} \) admits a reduced \(k \)-multinet, then \(e_k(\mathcal{A}) \geq k - 2 \).*
Suppose \(A \) has no points of multiplicity \(3r \) with \(r > 1 \). Then \(A \) admits a reduced 3-multinet iff \(A \) admits a 3-net iff \(\beta_3(A) \neq 0 \). Moreover,

- \(\beta_3(A) \leq 2 \).
- \(e_3(A) = \beta_3(A) \), and thus \(e_3(A) \) is combinatorially determined.

Corollary (PS)

Suppose all flats \(X \in L_2(A) \) have multiplicity 2 or 3. Then \(\Delta(t) \), and thus \(b_1(F(A)) \), are combinatorially determined.

Theorem (PS)

Suppose \(A \) supports a 4-net and \(\beta_2(A) \leq 2 \). Then

\[
e_2(A) = e_4(A) = \beta_2(A) = 2.
\]
Theorem (Papadima–S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3r$ with $r > 1$. Then \mathcal{A} admits a reduced 3-multinet iff \mathcal{A} admits a 3-net iff $\beta_3(\mathcal{A}) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$, and thus $e_3(\mathcal{A})$ is combinatorially determined.

Corollary (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

Theorem (PS)

Suppose \mathcal{A} supports a 4-net and $\beta_2(\mathcal{A}) \leq 2$. Then $e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A}) = 2$.
Theorem (Papadima–S. 2014)

Suppose \(A \) has no points of multiplicity \(3r \) with \(r > 1 \). Then \(A \) admits a reduced \(3 \)-multinet iff \(A \) admits a \(3 \)-net iff \(\beta_3(A) \neq 0 \). Moreover,

- \(\beta_3(A) \leq 2 \).
- \(e_3(A) = \beta_3(A) \), and thus \(e_3(A) \) is combinatorially determined.

Corollary (PS)

Suppose all flats \(X \in L_2(A) \) have multiplicity 2 or 3. Then \(\Delta(t) \), and thus \(b_1(F(A)) \), are combinatorially determined.

Theorem (PS)

Suppose \(A \) supports a \(4 \)-net and \(\beta_2(A) \leq 2 \). Then

\[
e_2(A) = e_4(A) = \beta_2(A) = 2.
\]
Conjecture (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{ps}(\mathcal{A}) = 0$ for all primes p and integers $s \geq 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A}) \text{ and } e_3(\mathcal{A}) = \beta_3(\mathcal{A}).$$

If $e_d(\mathcal{A}) = 0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$\Delta_{\mathcal{A}}(t) = (t - 1)^{|\mathcal{A}| - 1}((t + 1)(t^2 + 1))^{\beta_2(\mathcal{A})}(t^2 + t + 1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic–Papadima–Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).
Conjecture (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{ps}(\mathcal{A}) = 0$ for all primes p and integers $s \geq 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A}) \quad \text{and} \quad e_3(\mathcal{A}) = \beta_3(\mathcal{A}).$$

If $e_d(\mathcal{A}) = 0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$\Delta_{\mathcal{A}}(t) = (t - 1)^{|\mathcal{A}|-1}((t + 1)(t^2 + 1))^{\beta_2(\mathcal{A})}(t^2 + t + 1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic–Papadima–Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).
Conjecture (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{ps}(\mathcal{A}) = 0$ for all primes p and integers $s \geq 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A}) \quad \text{and} \quad e_3(\mathcal{A}) = \beta_3(\mathcal{A}).$$

If $e_d(\mathcal{A}) = 0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$\Delta_\mathcal{A}(t) = (t - 1)^{|\mathcal{A}|-1}((t + 1)(t^2 + 1))^{\beta_2(\mathcal{A})}(t^2 + t + 1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic–Papadima–Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).

For every prime $p \geq 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_1(F_m(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y(x^2 - y^2)^3(x^2 - z^2)^2(y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.
For every prime $p \geq 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_1(F_m(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.
We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

Theorem (Denham–S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H. There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A}\backslash\{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(M(\mathcal{A}'), \mathbb{k})$ varies with $\text{char}(\mathbb{k})$.
We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H | n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

Theorem (Denham–S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H. There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A}\setminus\{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(\mathcal{M}(\mathcal{A}'), \mathbb{k})$ varies with $\text{char}(\mathbb{k})$.
To produce p-torsion in the homology of the usual Milnor fiber, we use a “polarization" construction:

$\{A, m\} \sim A \uparrow m$, an arrangement of $N = \sum_{H \in A} m_H$ hyperplanes, of rank equal to $\text{rank } A + |\{H \in A: m_H \geq 2\}|$.

Theorem (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H.

There is then a choice of multiplicities m' on the deletion $A' = A \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = A' \uparrow m'$ and $q = 1 + |\{K \in A': m'_K \geq 3\}|$.
To produce p-torsion in the homology of the usual Milnor fiber, we use a “polarization” construction:

$(\mathcal{A}, m) \sim \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to $\text{rank } \mathcal{A} + |\{H \in \mathcal{A}: m_H \geq 2\}|$.

Theorem (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H.

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' \parallel m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \geq 3\}|$.
Corollary (DS)

*For every prime $p \geq 2$, there is an arrangement \mathcal{A} such that $H_q(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q > 1$.***

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

$$Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) \cdot ((x - y)^2 - w_2^2)((x + y)^2 - w_3^2)((x - z)^2 - w_4^2)((x + z)^2 - w_5^2)((x + z)^2 - 2w_5^2).$$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).
Corollary (DS)

For every prime $p \geq 2$, there is an arrangement \mathcal{A} such that $H_q(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q > 1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

$$Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1 w_2 w_3 w_4 w_5 (x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1).$$

$$(x - y)^2 - w_2^2)((x + y)^2 - w_3^2)((x - z)^2 - w_4^2)((x + z)^2 - w_5^2)(x^2 - 2w_1^2).$$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).
Example (Zuber 2010)

- Let \mathcal{A} be the arrangement in \mathbb{C}^3 defined by
 \[Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3). \]
- The variety $\mathcal{R}^1(M) \subset \mathbb{C}^9$ has 12 local components (from triple points), and 4 essential components (from 3-nets).
- One of these 3-nets corresponds to the rational map $\mathbb{C}P^2 \dashrightarrow \mathbb{C}P^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 - z_2^3, z_2^3 - z_3^3)$.
- This map can be used to construct a 4-dimensional subtorus $T = \exp(L)$ inside $\text{Hom}(\pi_1(F(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^{12}$.
- The subspace $L \subset \mathcal{H}^1(F(\mathcal{A}), \mathbb{C})$ is not a component of $\mathcal{R}^1(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber $F(\mathcal{A})$ is not 1-formal.
Example (Zuber 2010)

- Let \mathcal{A} be the arrangement in \mathbb{C}^3 defined by
 \[Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3). \]

- The variety $\mathcal{R}^1(M) \subset \mathbb{C}^9$ has 12 local components (from triple points), and 4 essential components (from 3-nets).

- One of these 3-nets corresponds to the rational map $\mathbb{CP}^2 \rightarrow \mathbb{CP}^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 - z_2^3, z_2^3 - z_3^3)$.

- This map can be used to construct a 4-dimensional subtorus $T = \exp(L)$ inside $\text{Hom}(\pi_1(F(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^{12}$.

- The subspace $L \subset H^1(F(\mathcal{A}), \mathbb{C})$ is not a component of $\mathcal{R}^1(F(\mathcal{A}))$.

- Thus, the tangent cone formula is violated, and so the Milnor fiber $F(\mathcal{A})$ is not 1-formal.
The formality problem

Example (Zuber 2010)

Let \mathcal{A} be the arrangement in \mathbb{C}^3 defined by

$$Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3).$$

The variety $\mathcal{R}^1(M) \subset \mathbb{C}^9$ has 12 local components (from triple points), and 4 essential components (from 3-nets).

One of these 3-nets corresponds to the rational map $\mathbb{CP}^2 \to \mathbb{CP}^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 - z_2^3, z_2^3 - z_3^3)$.

This map can be used to construct a 4-dimensional subtorus $T = \exp(L)$ inside $\text{Hom}(\pi_1(F(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^{12}$.

The subspace $L \subset H^1(F(\mathcal{A}), \mathbb{C})$ is not a component of $\mathcal{R}^1(F(\mathcal{A}))$.

Thus, the tangent cone formula is violated, and so the Milnor fiber $F(\mathcal{A})$ is not 1-formal.