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Do the following five problems. Give proofs or justifications for each statement you make. Draw
pictures when needed. Be as clear and concise as possible. Show all your work.

1. Let f : X → Y be a continuous, surjective map from a space X to a connected space Y .
Assume f−1(y) is connected, for each y ∈ Y .

(a) Show that if f is a quotient map, then X is connected.

(b) Give an example to show that if f is not a quotient map, then X need not be connected.

2. Let f : X → Y be a continuous map from a space X to a Hausdorff space Y . Let C be a
closed subspace of Y , and let U be an open neighborhood of f−1(C) in X.

(a) Show that if X is compact then there is an open neighborhood V of C in Y such that
f−1(V ) is contained in U .

(b) Give an example to show that if X is not compact, then there need not be such a neigh-
borhood V .

3. For an integer n ≥ 1, let Sn be the n-sphere, RPn the n-dimensional projective space, and Tn

the n-dimensional torus.

(a) For which values of n does there exist a continuous map Sn → S1 which is not homotopic
to a constant?

(b) For which values of n does there exist a continuous map RPn → S1 which is not homotopic
to a constant?

(c) For which values of n does there exist a continuous map Tn → S1 which is not homotopic
to a constant?

4. Let A be a 2-holed torus (i.e., a compact, connected, orientable surface of genus 2) with an
open 2-disk removed, and let B be another copy of the 2-disk.

Let f : ∂B → ∂A be the map winding three times (upon identifying ∂A and ∂B with the
unit circle S1 = {z ∈ C | |z| = 1}, the map f is given by f(z) = z3).

Finally, let X = A ∪f B be the space obtained from A by adjoining the 2-cell B along the
attaching map f .

(a) Compute the fundamental group of X.

(b) Compute all the (integral) homology groups of X.

5. Let B = S1 ∨ S1 be the wedge of two circles. Find at least 4 non-equivalent 3-fold covering
spaces p : E → B, with E path-connected. In each case:

(a) Draw a picture of the cover, clearly indicating how the projection map p works.

(b) Compute the induced homomorphism on fundamental groups, p] : π1(E, e) → π1(B, b),
for some conveniently chosen basepoints e and b with p(e) = b.

(c) Compute the induced homomorphism on first homology groups, p∗ : H1(E,Z)→ H1(B,Z).

(d) Indicate whether the cover is regular or not.


