1. Let $X = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$, and let $f : X \to \mathbb{R}$ be the function defined by $f(x, y) = x$. Prove or disprove the following:
 (a) f is a continuous map.
 (b) f is an open map.
 (c) f is a closed map.
 (d) f is a quotient map.
 (e) f is a local homeomorphism.

2. Prove or disprove the following:
 (a) If X and Y are path-connected, then $X \times Y$ is path-connected.
 (b) If $A \subset X$ is path-connected, then \overline{A} is path-connected.
 (c) If X is locally path-connected, and $A \subset X$, then A is locally path-connected.
 (d) If X is path-connected, and $f : X \to Y$ is continuous, then $f(X)$ is path-connected.
 (e) If X is locally path-connected, and $f : X \to Y$ is continuous, then $f(X)$ is locally path-connected.

3. Let $X = S^1 \vee S^1$ be the wedge of two circles at the basepoint x_0.
 (a) Explain why we may identify $\pi_1(X, x_0)$ with F_2, the free group of rank 2.
 (b) Consider the homomorphism $\phi : F_2 \to S_3$ that maps the first generator to the transposition $(1 \ 2 \ 3)$, and the second generator to the 3-cycle $(1 \ 3 \ 2)$. Draw the covering space $p : Y \to X$ whose associated lifting correspondence is ϕ.
 (c) Is p a normal (that is, regular) cover?
 (d) Fix a basepoint $y_0 \in p^{-1}(x_0)$ and compute $\pi_1(Y, y_0)$.
 (e) Determine the homomorphism $p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)$.
 (f) Determine the homomorphism $p_* : H_1(Y) \to H_1(X)$.
 (g) Does the index of $p_* (\pi_1(Y, y_0))$ in $\pi_1(X, x_0)$ coincide with the index of $p_* (H_1(Y))$ in $H_1(X)$?
4. Let $p: E \to B$ be a covering space. Fix a basepoint $b_0 \in B$, and suppose $p^{-1}(b_0)$ has k elements.
 (a) Assume B is connected. Show that $p^{-1}(b)$ has also k elements, for any $b \in B$.
 (b) Assume that, in addition, B is compact. Show that E is also compact.

5. Let S^2 be the 2-sphere, \mathbb{RP}^2 the projective plane, and T^2 the 2-torus.
 (a) For each of these 3 spaces, compute the fundamental group, and identify the universal cover.
 (b) Prove or disprove the following:
 (i) Every continuous map $S^2 \to \mathbb{RP}^2$ is homotopic to a constant map.
 (ii) Every continuous map $S^2 \to T^2$ is homotopic to a constant map.
 (iii) Every continuous map $\mathbb{RP}^2 \to S^2$ is homotopic to a constant map.
 (iv) Every continuous map $\mathbb{RP}^2 \to T^2$ is homotopic to a constant map.
 (v) Every continuous map $T^2 \to S^2$ is homotopic to a constant map.
 (vi) Every continuous map $T^2 \to \mathbb{RP}^2$ is homotopic to a constant map.