Do six of the following seven problems. Give proofs or justifications for each statement you make. Be as clear and concise as possible. Show all your work.

1. Let \(f: X \to Y \) be a continuous map between topological spaces. Assume that \(Y \) is a Hausdorff space. Show that the graph \(\Gamma_f = \{ (x, y) \in X \times Y \mid y = f(x) \} \) is closed in \(X \times Y \).

2. Let \(X = \{ (x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q} \} \) be the set of all points in the plane with at least one rational coordinate. Show that \(X \), with the induced topology, is a connected space.

3. For each pair of spaces \((X, A)\) below, determine whether a retraction \(r: X \to A \) exists. If it does, sketch a construction of such a retraction; if it doesn’t, explain why not.
 (a) \(X = \mathbb{R}, \) with \(A = [0, 1] \).
 (b) \(X = \mathbb{R}, \) with \(A = (0, 1) \).
 (c) \(X \) the disk \(D^2 \), with \(A \) its boundary circle.
 (d) \(X \) the Möbius band, with \(A \) its boundary circle.

4. Let \(X = \mathbb{R}^3 \setminus \{ \{x\text{-axis}\} \cup \{y\text{-axis}\} \cup \{z\text{-axis}\} \} \). Compute the fundamental group of \(X \).

5. Let \(M_g \) be the compact, connected, orientable surface of genus \(g \). Prove the following.
 (a) If \(M_g \) is a covering of \(M_h \), then \(g = n(h - 1) + 1 \), for some \(n \) (equal to the number of sheets).
 (b) Conversely, if \(g = n(h - 1) + 1 \), there is an \(n \)-fold covering \(M_g \to M_h \).

6. Let \(\mathbb{R}P^2 \) be the (real) projective plane. Find all the connected covering spaces of
 (a) \(\mathbb{R}P^2 \vee \mathbb{R}P^2 \), the one-point union of two copies of \(\mathbb{R}P^2 \);
 (b) \(\mathbb{R}P^2 \sharp \mathbb{R}P^2 \), the connected sum of two copies of \(\mathbb{R}P^2 \) (also known as the Klein bottle).

7. Let \(X = S^1 \times K \) be the product of the circle with the Klein bottle.
 (a) Find a CW-decomposition of \(X \).
 (b) Determine the chain complex \((C_*(X), d) \) associated to that cell decomposition.
 (c) Compute the homology groups \(H_*(X) \).