Northeastern University
Department of Mathematics

Prof. A. Suciu MTH 3481 - TOPOLOGY 3

This is a take-home exam, due Monday, June 15, at 9AM. Do 6 of the following 7 problems. Give complete proofs or justifications for each statement you make. Show all your work.

1. Let $Y=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\sin \frac{1}{x}\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid x=0,-1 \leq y \leq 1\right\}$ and $X=\{0,1\}$. Let $f: X \rightarrow Y$, given by $f(0)=(0,0)$ and $f(1)=\left(\frac{1}{\pi}, 0\right)$.
(a) Show that $f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ is an isomorphism, for all $n \geq 0$.
(b) Show that f is not a homotopy-equivalence.
(c) Does this contradict Whitehead's theorem? Why, or why not?
2. Let X be a connected, finite CW-complex, with $\pi_{1}(X)$ having a non-trivial element of finite order. Let $Y=\widetilde{X} \times K\left(\pi_{1}(X), 1\right)$, where \widetilde{X} is the universal cover of X.
(a) Show that $\pi_{n}(X) \cong \pi_{n}(Y)$, for all $n \geq 0$.
(b) Show that X is not homotopy-equivalent to Y.
(c) Does this contradict Whitehead's theorem? Why, or why not?
3. Let $f: T^{3} \rightarrow S^{2}$ be the composite of the Hopf bundle map $p: S^{3} \rightarrow S^{2}$ and the quotient $\operatorname{map} q: T^{3} \rightarrow S^{3}$, which collapses the 2 -skeleton of the 3 -torus to a point.
(a) Show that $f_{*}=0: \pi_{n}\left(T^{3}\right) \rightarrow \pi_{n}\left(S^{2}\right)$, for all $n \geq 0$.
(b) Show that $f_{*}=0: H_{n}\left(T^{3}\right) \rightarrow H_{n}\left(S^{2}\right)$, for all $n>0$.
(c) And yet f is not homotopic to a constant map.
4. Let X be a connected CW-complex, with $\pi_{i}(X)=0$ for $1<i<n$, for some $n \geq 2$. Let $h: \pi_{n}(X) \rightarrow H_{n}(X)$ be the Hurewicz homomorphism. Show that $H_{n}(X) / h\left(\pi_{n}(X)\right) \cong$ $H_{n}\left(K\left(\pi_{1}(X), 1\right)\right.$.
5. Let G be an abelian group.
(a) Show that $H_{n+1}(K(G, n))=0$, for $n>1$.
(b) Show that there is a Moore space $M(G, 1)$ if and only if $H_{2}(K(G, 1))=0$.
(c) For what values of n does there exist a Moore space of type $M\left(\mathbb{Z}^{n}, 1\right)$?
6. Let $X=\mathbb{C P}^{2} \cup e^{3}$, with attaching map $S^{2} \xrightarrow{\times p} S^{2}=\mathbb{C P}^{1} \subset \mathbb{C P}^{2}$, and $Y=M\left(\mathbb{Z}_{p}, 2\right) \vee S^{4}$.
(a) Show that $M\left(\mathbb{Z}_{p}, 2\right)$ can be chosen so that X and Y have the same 3-skeleta.
(b) Show that $H^{*}(X ; \mathbb{Z}) \cong H^{*}(Y ; \mathbb{Z})$ (as graded rings).
(c) Show that $H^{*}\left(X ; \mathbb{Z}_{p}\right) \not \not H^{*}\left(Y ; \mathbb{Z}_{p}\right)$ (as graded rings).
7. Let G be a group, and let $\left\{M_{n}\right\}_{n=1}^{\infty}$ be a sequence of $\mathbb{Z} G$-modules.
(a) Construct a CW-complex X with $\pi_{1}(X)=G$, and $\pi_{n}(X)=M_{n}$ (as $\mathbb{Z} G$-modules).
(b) If $X=K(G, 1) \times Y$, where $\pi_{1}(Y)=0$, show that $\pi_{n}(X)$ is trivial as a $\mathbb{Z} G$-module, for all $n>1$.
(c) If $X=\mathbb{R} \mathbb{P}^{n}$, show that $\pi_{n}(X)=\mathbb{Z}$ is trivial as a \mathbb{Z}_{2}-module if and only if n is odd.
