NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

Prof. A. Suciu MTH 3481 — TOPOLOGY 3 Spring 1998 FINAL EXAM

This is a take-home exam, due Monday, June 15, at 9AM. Do 6 of the following 7 problems. Give complete proofs or justifications for each statement you make. Show all your work.

- 1. Let $Y = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\} \cup \{(x,y) \in \mathbb{R}^2 \mid x = 0, -1 \le y \le 1\}$ and $X = \{0,1\}$. Let $f: X \to Y$, given by f(0) = (0,0) and $f(1) = (\frac{1}{\pi}, 0)$.
 - (a) Show that $f_*: \pi_n(X) \to \pi_n(Y)$ is an isomorphism, for all $n \ge 0$.
 - (b) Show that f is *not* a homotopy-equivalence.
 - (c) Does this contradict Whitehead's theorem? Why, or why not?
- 2. Let X be a connected, finite CW-complex, with $\pi_1(X)$ having a non-trivial element of finite order. Let $Y = \widetilde{X} \times K(\pi_1(X), 1)$, where \widetilde{X} is the universal cover of X.
 - (a) Show that $\pi_n(X) \cong \pi_n(Y)$, for all $n \ge 0$.
 - (b) Show that X is *not* homotopy-equivalent to Y.
 - (c) Does this contradict Whitehead's theorem? Why, or why not?
- 3. Let $f: T^3 \to S^2$ be the composite of the Hopf bundle map $p: S^3 \to S^2$ and the quotient map $q: T^3 \to S^3$, which collapses the 2-skeleton of the 3-torus to a point.
 - (a) Show that $f_* = 0 : \pi_n(T^3) \to \pi_n(S^2)$, for all $n \ge 0$.
 - (b) Show that $f_* = 0 : H_n(T^3) \to H_n(S^2)$, for all n > 0.
 - (c) And yet f is *not* homotopic to a constant map.
- 4. Let X be a connected CW-complex, with $\pi_i(X) = 0$ for 1 < i < n, for some $n \ge 2$. Let $h : \pi_n(X) \to H_n(X)$ be the Hurewicz homomorphism. Show that $H_n(X)/h(\pi_n(X)) \cong H_n(K(\pi_1(X), 1))$.
- 5. Let G be an abelian group.
 - (a) Show that $H_{n+1}(K(G, n)) = 0$, for n > 1.
 - (b) Show that there is a Moore space M(G, 1) if and only if $H_2(K(G, 1)) = 0$.
 - (c) For what values of n does there exist a Moore space of type $M(\mathbb{Z}^n, 1)$?
- 6. Let $X = \mathbb{CP}^2 \cup e^3$, with attaching map $S^2 \xrightarrow{\times p} S^2 = \mathbb{CP}^1 \subset \mathbb{CP}^2$, and $Y = M(\mathbb{Z}_p, 2) \vee S^4$.
 - (a) Show that $M(\mathbb{Z}_p, 2)$ can be chosen so that X and Y have the same 3-skeleta.
 - (b) Show that $H^*(X;\mathbb{Z}) \cong H^*(Y;\mathbb{Z})$ (as graded rings).
 - (c) Show that $H^*(X; \mathbb{Z}_p) \cong H^*(Y; \mathbb{Z}_p)$ (as graded rings).
- 7. Let G be a group, and let $\{M_n\}_{n=1}^{\infty}$ be a sequence of $\mathbb{Z}G$ -modules.
 - (a) Construct a CW-complex X with $\pi_1(X) = G$, and $\pi_n(X) = M_n$ (as $\mathbb{Z}G$ -modules).
 - (b) If $X = K(G, 1) \times Y$, where $\pi_1(Y) = 0$, show that $\pi_n(X)$ is trivial as a $\mathbb{Z}G$ -module, for all n > 1.
 - (c) If $X = \mathbb{RP}^n$, show that $\pi_n(X) = \mathbb{Z}$ is trivial as a \mathbb{ZZ}_2 -module if and only if n is odd.