NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

Prof. Alex Suciu

MTH 3107 – TOPOLOGY II Winter 1998

Take-Home Final Exam

Due Tuesday, March 17

Instructions: Do at least 6 of the following 10 problems. Give complete proofs or justifications for each statement you make. Show all your work.

- 1. Let X = [0, 1] and $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\} \cup \{0\}$. Is $H_1(X, A)$ isomorphic to $\widetilde{H}_1(X/A)$? Explain why, or why not.
- 2. (a) Let X and Y be two finite CW complexes. Show that $\chi(X \times Y) = \chi(X)\chi(Y)$.
 - (b) Let A and B be two subcomplexes of X such that $X = A \cup B$. Show that $\chi(X) = \chi(A) + \chi(B) \chi(A \cap B)$.
- 3. Let $f: (X, A) \to (Y, B)$ be a continuous map. Assume that $f: X \to Y$ and $f|_A: A \to B$ are homotopy equivalences.
 - (a) Show that $f_*: H_*(X, A) \to H_*(Y, B)$ is an isomorphism.
 - (b) Give an example where $H_*(X, A) \cong H_*(Y, B)$, although X is homotopy equivalent to Y, and A is homotopy equivalent to B.
- 4. Let $X = \mathbb{RP}^3 \times L(4, 1)$ be the product of the projective space $\mathbb{RP}^3 = S^3/\mathbb{Z}_2$ with the lens space $L(4, 1) = S^3/\mathbb{Z}_4$.
 - (a) Find a CW-decomposition of X.
 - (b) Determine the chain complex $(C_{\bullet}(X), d)$ associated to that cell decomposition.
 - (c) Compute the homology groups $H_*(X)$.
- 5. Let $X = G_3(\mathbb{R}^6)$ be the Grassmanian of 3-planes in \mathbb{R}^6 .
 - (a) Find a CW-decomposition of X.
 - (b) Determine the chain complex $(C_{\bullet}(X), d)$ associated to that cell decomposition.
 - (c) Compute the homology groups $H_*(X)$.
- 6. Let T_g be the orientable surface of genus g.
 - (a) Describe a 2-fold cover $p: T_3 \to T_2$.
 - (b) Compute $p_*: H_1(T_3) \to H_1(T_2)$.
 - (c) Compute $p_*: H_2(T_3) \to H_2(T_2)$.
- 7. Let $X = (\mathbb{C}^2 \setminus \{0\})/(z_1, z_2) \sim (2z_1, 2z_2)$. Compute $H_*(X)$.
- 8. Show that \mathbb{RP}^2 is not a retract of \mathbb{RP}^3 .
- 9. Problem 1, in Bredon's book, p. 259.
- 10. Problem 5, in Bredon's book, p. 259.