NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

Prof. Alex Suciu MTH 3107 – TOPOLOGY II Winte

Winter 1999

Take-Home Final Exam

Due Monday, March 22

Instructions: Do at least 5 of the following 6 problems. Give complete proofs or justifications for each statement you make. Show all your work.

- 1. Let X be a space. Show that:
 - (a) $\widetilde{H}_n(X;\mathbb{Z}) = 0$ for all *n* if and only if $\widetilde{H}_n(X;\mathbb{Q}) = 0$ and $\widetilde{H}_n(X;\mathbb{Z}_p) = 0$ for all *n* and all primes *p*.
 - (b) $f: X \to Y$ induces isomorphisms in $H_*(-; \mathbb{Z})$ if and only if it induces isomorphisms in $H_*(-; \mathbb{Q})$ and $H_*(-; \mathbb{Z}_p)$ for all primes p.
- 2. Prove the following theorem of Borsuk: If $f: S^n \to S^n$ commutes with the antipodal map, then f has odd degree. Remarks:
 - (i) There is a direct (and rather long) proof in Bredon's book (Theorem 20.6, pp. 244-245). Use instead the Borsuk-Ulam theorem (see hint to Problem 7, p. 245).
 - (ii) Note that this is not a homotopy-theoretic result. Indeed, $fa \simeq af$, for all f (show that!).
- 3. Let $X = K \times \mathbb{RP}^3$ be the product of the Klein bottle with the 3-dimensional projective space.
 - (a) Find a CW-decomposition of X.
 - (b) Determine the chain complex $(C_{\bullet}(X), d)$ associated to that cell decomposition.
 - (c) Compute the (cellular) homology groups $H_*(X)$ and $H_*(X;\mathbb{Z}_2)$.
- 4. Recall that, for a space X, and a short exact sequence $0 \to G' \xrightarrow{\alpha} G \xrightarrow{\beta} G'' \to 0$ of abelian groups, there is an associated long exact in homology,

$$\cdots \to H_i(X;G') \xrightarrow{\alpha_*} H_i(X;G) \xrightarrow{\beta_*} H_i(X;G'') \xrightarrow{\partial} H_{i-1}(G') \to \cdots$$

Compute explicitly this homology sequence (the terms and the maps), in case the coefficients sequence is $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}_2 \to 0$, and

- (a) $X = \mathbb{RP}^3$.
- (b) X = K, the Klein bottle.
- 5. Let A be an integral 3×3 matrix, and let $f: T^3 \to T^3$ be the induced self-map of the 3-torus. Compute the Lefschetz number L(f) in terms of the entries of A.
- 6. Let X be a finite simplicial complex, and let G be a finite group acting simplicially on X. Show that, for every $g \in G$,

$$L(g) = \chi(X^g)$$

where $X^g = \{x \in X \mid gx = x\}.$