Prof. A. Suciu
 LINEAR ALGEBRA
 Spring 1999
 QUIZ 3

1. 11 points Let $A=\left[\begin{array}{lllll}0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$.
(a) Find a basis for $\operatorname{im} A$.
(b) Find a basis for $\operatorname{ker} A$.
(c) Compute:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{im} A)= \\
& \operatorname{dim}(\operatorname{ker} A)=
\end{aligned}
$$

$\operatorname{rank} A=$
2. 10 points Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & -5 & -1 \\ -1 & 4 & 5\end{array}\right]$.
(a) Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Does the equation $A \cdot \vec{x}=\overrightarrow{0}$ only have the solution $\vec{x}=\overrightarrow{0}$, or does it have other solutions? Explain your answer.
(c) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{3} ? Explain your answer.
3. 9 points In each of the following, a subset V of \mathbb{R}^{2} is given. Circle one answer:
(a) $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x-2 y=6\right\}$
Is closed under addition:
YES NO
Is closed under scalar multiplication:
YES
YES NO
(b) $\left.V=\left\{\begin{array}{l|l}{[x} \\ y\end{array}\right] \left\lvert\, \begin{array}{c}x-2 y=0 \\ x, y \text { integers }\end{array}\right.\right\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication: YES NO Is a vector subspace of \mathbb{R}^{2} :

YES NO
(c) $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x y \geq 0\right\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{2} :
YES NO
(d) $\left.V=\left\{\begin{array}{l|l}2 x-y \\ x+3 y\end{array}\right] \left\lvert\, \begin{array}{c}x, y \text { arbitrary } \\ \text { constants }\end{array}\right.\right\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication:
YES
NO
Is a vector subspace of \mathbb{R}^{2} :
YES NO

