\qquad

Instructor:

\qquad
Department of Mathematics Northeastern University

MTH 1187-Probability Winter 2001

Final Exam

Instructions: This is an open-book, open-notes exam. Put your name, and the name of your instructor, in the blanks above. There are 5 problems, worth 40 points in all. Show your work! If there is not enough room, use the back page.
(1) Jane and Jill each take 3 shots at a basket. Jane's success probability is $\frac{3}{5}$ on each shot, and Jill's is $\frac{1}{2}$. All shots are independent. Find:
(a) The probability that at least one of the 6 shots is a success.
(b) The expected total number of successes.

7 pts
(2) Here is the density (pdf) of a random variable X.

(a) Find $P(X<3)$.
(b) Find the variance of X. [You can use $E\left(X^{2}\right)=\frac{47}{6}$.]

7 pts
(3) Two balls are picked at random from this box without replacing.

Suppose the numbers on the picked balls are X and Y. Find:
(a) $P(X+Y=6)$.
(b) $E(X+Y)$.
(4) A coin is tossed 9 times.
(a) If the coin is fair, find the probability that 6 heads are obtained.
(b) If the coin is lopsided, so that the probability of heads is $\frac{2}{3}$ on any toss, find the probability of obtaining 6 heads.
(c) Before tossing, we believed that there was a 50% chance that the coin was fair, and a 50% chance that the coin was lopsided (with probability of heads $\frac{2}{3}$). Given that 6 heads were obtained, now what's the probability that the coin is fair?
(5) In a certain game, you win $\$ 2$ with probability $\frac{1}{4}$, and lose $\$ 1$ with probability $\frac{3}{4}$. You play 100 times (independently). Let W be the net total winnings.
(a) Find the mean and the standard deviation of W.
(b) Use the Central Limit Theorem to approximate the probability that you come out ahead after 100 games.

