Prof. A. Suciu
SOLUTIONS to EXAM 3
Winter 2001
(1) A random variable X has $E(X)=-4$ and $E\left(X^{2}\right)=30$. Let $Y=-3 X+7$. Compute:
(a) $V(X)=E\left(X^{2}\right)-E(X)^{2}=14$
(b) $V(Y)=(-3)^{2} V(X)=126$
(c) $E\left((X+5)^{2}\right)=E\left(X^{2}+10 X+25\right)=E\left(X^{2}\right)+10 E(X)+25=15$
(d) $E\left(Y^{2}\right)=V(Y)+E(Y)^{2}=126+(-3 E(X)+7)^{2}=487$
(2) A deck has only face cards: 4 Kings, 4 Queens, and 4 Jacks. Two cards are drawn at random, without replacement. If Q is the number of Queens obtained, find the expected value, the variance, and the standard deviation of Q.

$$
\begin{array}{ll}
P(Q=0)=\frac{8}{12} \cdot \frac{7}{11}=\frac{14}{33} & E(Q)=1 \cdot \frac{16}{33}+2 \cdot \frac{1}{11}=\frac{2}{3} \\
P(Q=2)=\frac{4}{12} \cdot \frac{3}{11}=\frac{1}{11} & E\left(Q^{2}\right)=1^{2} \cdot \frac{16}{33}+2^{2} \cdot \frac{1}{11}=\frac{28}{33} \\
P(Q=1)=1-\frac{14}{33}-\frac{1}{11}=\frac{16}{33} & V(Q)=\frac{28}{33}-\left(\frac{2}{3}\right)^{2}=\frac{40}{99} \\
D(Q)=\frac{2}{3} \sqrt{\frac{10}{11}} \simeq 0.635642
\end{array}
$$

(3) In a certain casino game, you can win either $\$ 5$, with probability 0.05 , or $\$ 2$, with probability 0.2 , or lose $\$ 1$, with probability 0.75 .
(a) Find the mean and variance of your net winnings if you play once.

$$
\begin{aligned}
E(X) & =5 \cdot 0.05+2 \cdot 0.2-1 \cdot 0.75=-0.1 \\
E\left(X^{2}\right) & =5^{2} \cdot 0.05+2^{2} \cdot 0.2+(-1)^{2} \cdot 0.75=2.8 \\
V(X) & =2.8-(-0.1)^{2}=2.79
\end{aligned}
$$

(b) Suppose you play 80 times this game. Find the mean and standard deviation of your total net winnings.

$$
\begin{aligned}
& E\left(S_{80}\right)=80 \cdot E(X)=-8 \\
& V\left(S_{80}\right)=80 \cdot V(X)=223.2, \quad D\left(S_{80}\right)=14.9399
\end{aligned}
$$

(c) Use Gaussian approximation to the probability you come out ahead after playing 80 times.

$$
P\left(S_{80}>0\right)=P\left(Z>\frac{0-(-8)}{14.9399}\right)=P(Z>0.53548)=0.5-0.20384=0.29616
$$

(4) A biased coin comes up heads 30% of the time. The coin is tossed 400 times. Let X be the number of heads in the 400 tossings.
(a) Use Chebyshev's inequality to bound the probability that X is between 100 and 140.

$$
\begin{gathered}
n=400, \quad p=0.3, \quad \mu=n p=120, \quad \sigma^{2}=n p(1-p)=84 \\
P(100 \leq X \leq 140)=P(|X-120| \leq 20) \geq 1-\frac{84}{20^{2}}=0.79
\end{gathered}
$$

(b) Use Gaussian approximation to compute the probability that X is between 100 and 140 .
$P(100 \leq X \leq 140) \simeq P\left(\frac{100-120}{\sqrt{84}} \leq Z \leq \frac{100-120}{\sqrt{84}}\right)=P(-2.18218 \leq Z \leq 2.18218) \simeq 0.9709$

