Instructor: Prof. A. Suciu

SOLUTIONS to QUIZ 7

(1) [6 points] Consider de region in the plane, R, bounded by the x-axis, the y-axis, the graph of $y=e^{x}$, and the line $x=1$. For each of the following, write a definite integral, or an expression involving a definite integral, which would yield the desired quantity. DO NOT EVALUATE THESE INTEGRALS.
(a) The volume of the solid obtained by revolving R around the x-axis.

$$
\text { Volume }=\int_{0}^{1} \pi e^{2 x} d x
$$

(b) The volume of the solid obtained by revolving R around the y-axis.

$$
\text { Volume }=\pi \cdot e-\int_{1}^{e} \pi(\ln y)^{2} d y
$$

(2) [4 points] Consider the curve $y=\sqrt{x^{5}}$. Write a definite integral that gives the arc length of the curve between $x=0$ and $x=2$. DO NOT EVALUATE THIS INTEGRAL.

$$
\text { Length }=\int_{0}^{2} \sqrt{1+\left(\frac{5}{2} x^{3 / 2}\right)^{2}} d x
$$

(3) [5 points] A rod of length 2 meters and density $\delta(x)=x \mathrm{~kg} / \mathrm{m}$ is placed on the x-axis, with ends at $x=0$ and $x=2$. Find the coordinate of the center of mass of the rod.

$$
\bar{x}=\frac{\int_{0}^{2} x \cdot x d x}{\int_{0}^{2} x d x}=\frac{\left.\frac{x^{3}}{3}\right|_{0} ^{2}}{\left.\frac{x^{2}}{2}\right|_{0} ^{2}}=\frac{4}{3} \mathrm{~m}
$$

(4) [5 points] A square plate with side-length 2 is placed with its center at the origin. The density is given by $\delta(y)=y+3 \mathrm{~kg} / \mathrm{m}^{2}$, where y is the distance from the x-axis. Find the total mass of the plate.

$$
\text { Mass }=\int_{-1}^{1} 2 \cdot(y+3) d y=\left.\left(y^{2}+6 y\right)\right|_{-1} ^{1}=12 \mathrm{~kg}
$$

