Instructor: Prof. A. Suciu
MTH 1124

Name: \qquad
Calculus 2
Winter 2001

QUIZ 3

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces on these pages. Show your work - if there is not enough room, use another sheet.
(1) [4 points] Compute: $\int\left(\frac{5 \sqrt{x}}{x}+\frac{x^{2}-1}{x}\right) d x=$
(2) [4 points] Find the solution to the initial value problem

$$
\frac{d y}{d x}=x+\sin x, \quad y(\pi)=2
$$

(3) [6 points] On the Moon, the acceleration due to gravity is about $1.6 \mathrm{~m} / \mathrm{sec}^{2}$. A rock is dropped from the top of a 1000-meters lunar mountain, with initial velocity 0 .
(a) Find the velocity of the rock, $v(t)$, at time t.
(b) Find the height of the rock, $s(t)$, at time t.
(c) When does the rock hit the Moon?
(4) [3 points] Let $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$, for $x \geq 0$. Find $\frac{d}{d x}\left(x^{3} \operatorname{erf}(x)\right)$.
(5) [3 points] Let $F(x)=\int_{2}^{x} \frac{t}{1+\sqrt{t}} d t$, for $x \geq 2$. Find $F^{\prime}(9)$.

