Instructor: Prof. A. Suciu
MTH 1124

Name: \qquad
Calculus 2
Winter 2001

QUIZ 2

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces on these pages. Show your work - if there is not enough room, use another sheet.
(1) [5 points] Let f be a function. The graph of the derivative f^{\prime} is shown below. Given that $f(0)=3$, find $f(1)$ and $f(2)$.

(2) [5 points] Suppose $\int_{2}^{3} f(x) d x=2, \int_{3}^{5} f(x) d x=4, \int_{2}^{3}(f(x))^{2} d x=6, \int_{3}^{5}(f(x))^{2} d x=9$. Find:
(a) $\int_{2}^{5} f(x) d x=$
(b) $\int_{5}^{2}(f(x))^{2} d x=$
(c) $\int_{3}^{5}\left(3 f(x)-4(f(x))^{2}\right) d x=$
(d) $\int_{2}^{3} 8(f(x))^{2} d x-\left(\int_{2}^{3} 5 f(x) d x\right)^{2}=$
(e) $3 \int_{2}^{2}(f(x))^{2} d x-\left(\int_{3}^{5} f(x) d x\right)^{2}+\int_{5}^{5} 7 f(x) d x=$
(3) [4 points] Find the following indefinite integrals.
(a) $\int\left(\sqrt[3]{x}-\frac{1}{\sqrt{x}}\right) d x=$
(b) $\int\left(e^{\pi}+3 e^{2 t}+\frac{1}{e^{t}}\right) d t=$
(4) [6 points] Using the Fundamental Theorem of Calculus, evaluate the following definite integrals, both exactly and numerically (to at least 3 significant digits).
(a) $\int_{1}^{2}\left(\frac{x}{3}+\frac{3}{x}\right) d x=$
(b) $\int_{\pi / 4}^{\pi / 2}(2 \sin t+\cos t) d t=$

