Instructor: Prof. A. Suciu
MTH 1124

Name: \qquad
Calculus 2
Winter 2001

QUIZ 1

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces on these pages. Show your work - if there is not enough room, use another sheet.
(1) A car racing at $100 \mathrm{ft} / \mathrm{sec}$ brakes to a complete stop in 12 seconds. Its velocity is recorded every 2 seconds, as follows:

t (seconds)	0	2	4	6	8	10	12
$v(t)(\mathrm{ft} / \mathrm{sec})$	100	90	75	55	30	10	0

(a) Give lower and upper estimates for the distance the car traveled in those 12 seconds.
(b) On a sketch of velocity against time, show the lower and upper estimates of part (a).
(c) To estimate the distance traveled accurate to within 5 feet, how often should one record the velocity?
(2) Estimate $\int_{1}^{4} \frac{x}{x+1} d x$ using left-hand and right-hand sums with 6 subdivisions.
(3) The graph of $y=f(x)$ is given below.

(a) What is $\int_{-4}^{6} f(x) d x$?
(b) What is the average value of f on $[-4,6]$?
(4) Water is spilling out of a reservoir at a rate of $f(t)=100 e^{-t}$ gallons per minute, where t is measured in minutes.
(a) Write a definite integral expressing the total quantity of water which spills out in the first 3 hours. (Do not evaluate the integral!)
(b) In what units is the integral in part (b) measured in?

