QUIZ 5

1. Solve the differential equation

$$
\begin{equation*}
y y^{\prime}=e^{8 x} \tag{9}
\end{equation*}
$$

by separating the variables. Then determine the solution $y=y(x)$ for which $y(0)=3$.
2. Find all the values of k for which the function $y(x)=e^{k x}$ is a solution to the differential equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$.
3. A glass of lemonade at $35^{\circ} \mathrm{F}$ is taken out of a refrigerator and brought into a room that has constant temperature $70^{\circ} \mathrm{F}$. After 2 minutes, the temperature of the lemonade rises to $45^{\circ} \mathrm{F}$. Suppose Newton's law of cooling applies.
(a) What differential equation describes the rate of warming of the lemonade?
(b) Find the temperature $y(t)$ of the lemonade at time t minutes after is was brought into the room.
(c) What is the temperature of the lemonade, 5 minutes after is was brought into the room?
(d) What is the rate of warming of the lemonade, 5 minutes after is was brought into the room?

Table of Derivatives

Table of Antiderivatives

$$
\begin{aligned}
\int a d x & =a x+C \\
\int \frac{1}{x} d x & =\ln |x|+C \\
\int \sin (a x) d x & =-\frac{1}{a} \cos (a x)+C
\end{aligned}
$$

$$
\begin{aligned}
\int x^{n} d x & =\frac{x^{n+1}}{n+1}+C \quad(n \neq-1) \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C \quad(a \neq 0) \\
\int \cos (a x) d x & =\frac{1}{a} \sin (a x)+C \quad(a \neq 0)
\end{aligned}
$$

Differential Equations

Solution of $y^{\prime}=k y$: $\quad y=C e^{k t} \quad$ or $y=0$
(Exponential growth if $k>0$, exponential decay if $k<0$)
Solution of $y^{\prime}=k(r-y): \quad y=r+C e^{-k t} \quad$ or $y=r$
(Newton's law of cooling)

Solution of $y^{\prime}=k y(r-y):$

$$
y=\frac{r}{1+C e^{-r k t}} \quad \text { or } \quad y=0, y=r
$$

(Logistic equation)

$$
\begin{aligned}
& (f g)^{\prime}=f^{\prime} g+f g^{\prime} \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& \left(x^{n}\right)^{\prime}=n x^{n-1} \\
& \left(e^{x}\right)^{\prime}=e^{x} \\
& (\sin x)^{\prime}=\cos x \\
& (\cos x)^{\prime}=-\sin x \\
& (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \quad(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad(\arctan x)^{\prime}=\frac{1}{x^{2}+1}
\end{aligned}
$$

