QUIZ 2

1. A colony of giant bacteria is cultured for a period of time, but eventually dies out, for lack of sufficient nutrients. Its population at time t in hours is given by $P(t)=10 e^{t}-t e^{t}$, as long as $P(t) \geq 0$.
(a) What is the initial population?
(b) What is the rate of growth of the bacteria population at time $t=2$ hours?
(c) When is the rate of growth zero?
(d) What is the maximum size of the bacteria population?
(e) When does the population die out?
2. Compute:
(a) $\int x^{3}\left(x^{4}+7\right)^{5} d x=$
(b) $\int \frac{4 x}{\left(1-5 x^{2}\right)^{3}} d x=$
(c) $\int \frac{\sqrt{3 \ln x}}{x} d x=$
(d) $\int e^{\sin (2 x)} \cos (2 x) d x=$
3.

(6)
(a) Sketch the area represented by the integral $\int_{1}^{3} \frac{1}{x} d x$.
(b) Use a left-approximating sum $\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x$ with $n=4$ rectangles to approximate this integral.

Table of Derivatives

$$
\begin{aligned}
(f g)^{\prime} & =f^{\prime} g+f g^{\prime} \\
\left(\frac{f}{g}\right)^{\prime} & =\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \\
f(g(x))^{\prime} & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
\left(x^{n}\right)^{\prime} & =n x^{n-1} \\
\left(e^{x}\right)^{\prime} & =e^{x} \\
(\ln x)^{\prime} & =\frac{1}{x} \\
(\sin x)^{\prime} & =\cos x \\
(\cos x)^{\prime} & =-\sin x \\
(\arctan x)^{\prime} & =\frac{1}{x^{2}+1}
\end{aligned}
$$

Table of Antiderivatives

$$
\begin{aligned}
\int a d x & =a x+C \\
\int x^{n} d x & =\frac{x^{n+1}}{n+1}+C \quad(n \neq-1) \\
\int \frac{1}{x} d x & =\ln |x|+C \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C \quad(a \neq 0) \\
\int \sin (a x) d x & =-\frac{1}{a} \cos (a x)+C \quad(a \neq 0) \\
\int \cos (a x) d x & =\frac{1}{a} \sin (a x)+C \quad(a \neq 0) \\
\int(a f(x)+b g(x)) d x & =a \int f(x) d x+b \int g(x) d x \\
\int f(g(x)) g^{\prime}(x) d x & =F(g(x))+C, \quad \text { where } F^{\prime}=f
\end{aligned}
$$

