Name:	
Applications of Algebra	Spring 2000

MIDTERM

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces on these pages. Show your work - if there is not enough room, use another sheet.
(1) SET UP a linear program to solve the following problem. Be sure to identify the action variables, ALL the constraints, and the objective function. DO NOT SOLVE.

A health food store is making a tasty blend of carrots and avocados for a special diet. Carrots contain 100 units of vitamin A and 25 units of vitamin B per pound. Avocados contain 30 units of vitamin A and 80 units of vitamin B per pound. The mixture is to have at least 1,000 units, but no more than 3,000 units of vitamin A; and at least 1,200 units, but no more than 2,400 units of vitamin B. Carrots cost 60 cents per pound, and avocados cost $\$ 1.10$ per pound. How many pounds of each should be used in order to minimize costs?
(2) Use the substitution method to solve the following system of equations:

$$
\begin{gathered}
8 x+2 y=3 \\
-4 x+4 y=11
\end{gathered}
$$

(3) Solve the following system of linear inequalities AND shade the region:

$$
y \geq 1, \quad x \geq-2, \quad 2 x+5 y \leq 10
$$

(4) Find $4 A-B$, where $A=\left[\begin{array}{cc}-2 & 0 \\ 1 & -5 \\ 7 & -1 \\ 4 & -3\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 9 & -6 \\ -7 & 4\end{array}\right]$.
(5) Find the product

$$
\left[\begin{array}{cc}
1 & 4 \\
3 & -2 \\
5 & -1
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 1 & 0 \\
-3 & 4 & -5
\end{array}\right]=
$$

(6) Find the inverse of the matrix $A=\left[\begin{array}{cc}9 & 8 \\ -5 & -4\end{array}\right]$
(7) SOLVE the following linear programming problem. Be sure to shade in the feasible set, and mark down its corners (together with their coordinates).

Find the maximum and minimum values of $F=-3 x+5 y$, subject to the constraints

$$
y \geq 0, \quad y \leq 2, \quad-2 x+y \leq 0, \quad 2 x+y \leq 6
$$

Answer:

- The maximum value of F equals \qquad , and it occurs at the point (\qquad , \qquad).
- The minimum value of F equals \qquad , and it occurs at the point (\qquad , \qquad).
(8) The message

$$
[-16,12,-10,10,-64,51,-109,89,-122,99]
$$

was encoded using the matrix $M=\left[\begin{array}{cc}6 & -5 \\ -5 & 4\end{array}\right]$ and the coding scheme

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
1	-1	2	-2	3	-3	4	-4	5	-5	6	-6	7	-7	8	-8
Q	R	S	T	U	V	W	X	Y	Z	blank	6	,	.	$!$	$?$
9	-9	10	-10	11	-11	12	-12	13	-13	14	-14	15	-15	16	-16

(a) What matrix is needed for decoding the message?
(b) What is the message?

The message is: \qquad

