For problems \#1-4, assume the following coding scheme:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

1. Encode SAM using $M=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$ as the encoding matrix.
2. Use the inverse of M to decode the message: 18, 54, 64, 166
3. Encode ALGEBRA using $T=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$ as the encoding matrix.
4. Use the inverse of T to decode: $22,55,14,32,35,87,52,130$.

Use the following coding scheme for problem \#5 and tonight's homework.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
0	1	-1	2	-2	3	-3	4	-4	5	-5	6	-6	7	-7	8	-8	9

S	T	U	V	W	X	Y	Z	blank	!	.\dot{r}		
-9	10	-10	11	-11	12	-12	13	-13	14	-14	15	-15

5. The message: $-38,93,4,-7,29,-67,-51,121,20,-50,40,-98$ was encoded using the matrix $M=\left(\begin{array}{ll}3 & -7 \\ 2 & -5\end{array}\right)$.
(a) What matrix is needed to decode the message?
(b) What is the message?

TONIGHT'S HOMEWORK
6. The message: $6,12,-2,0,31,71,5,9,-13,-35,-44,-103$ was encoded using the matrix $N=\left(\begin{array}{rr}-1 & -2 \\ 2 & 5\end{array}\right)$.
(a) What matrix is needed to decode the message?
(b) What is the message?
7. The message $14,-50,-6,26,32,-115,17,-66,1,0,18,-59,-9,36,17,-64,-15,46$ was encoded using $P=\left(\begin{array}{cc}-2 & 7 \\ -1 & 4\end{array}\right)$.
(a) What matrix is needed to decode the message?
(b) What is the message?

