1. Compute the following:
(a) $C(30,3)=\frac{30 \cdot 29 \cdot 28}{3 \cdot 2 \cdot 1}=4060$
(b) $C(15,4)=\frac{15 \cdot 14 \cdot 13 \cdot 12}{4 \cdot 3 \cdot 2 \cdot 1}=1365$
(c) $C(9,5)=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=126$
(d) $C(25,2)=\frac{25 \cdot 24}{2 \cdot 1}=300$
2. How many committees of 3 people can be formed from a group of 8 people? $\quad C(8,3)$
3. A sample of 3 light bulbs is randomly selected from a batch of 15 . How many different samples are possible? $C(15,3)$
4. A major department store chain will be closing 4 of its 11 stores in the state. In how many ways can the 4 stores be chosen? $\quad C(11,4)$
5. How many tennis doubles teams can be formed from 12 players? $\quad C(12,2)$
6. In how many ways can a host choose 4 couples to invite for dinner from a group of 10 couples? $\quad C(10,4)$
7. 3 people are randomly chosen out of 50 people to receive a door prize. If the door prizes are identical, in how many ways may they be given out? $\quad C(50,3)$
8. A standard deck of 52 cards has 4 suits (Diamonds, Hearts, Clubs and Spades) and there are 13 cards in each suit (Ace through King).
(a) In how many ways can 4 Diamonds be chosen from the deck? $\quad C(13,4)$
(b) In how many ways can a hand of 4 red cards be chosen from the deck? $\quad C(26,4)$
(c) In how many ways can 2 kings and 2 queens be chosen? $\quad C(4,2) \cdot C(4,2)$
9. A city council is composed of 5 liberals and 4 conservatives. A delegation of 3 is to be selected to attend a convention.
(a) How many delegations are possible? $\quad C(9,3)$
(b) How many of these delegations could have all liberals? $\quad C(5,3)$
(c) How many of these delegations can have 2 conservatives and 1 liberals? $C(4,2) \cdot C(5,1)$
(d) How many of these delegations could have 2 or more liberals? $\quad C(5,2) \cdot C(4,1)+C(5,3)$
10. The chess club at a certain school has 10 members of which 6 are seniors and 4 are juniors.
(a) In how many ways can 5 members be chosen for an upcoming tournament? $C(10,5)$
(b) In how many ways can this group consist of at least 3 seniors?

$$
C(6,3) \cdot C(4,2)+C(6,4) \cdot C(4,1)+C(6,5)
$$

