Instructor: Prof. A. Suciu

Name:

MTH U576

Rings and Fields

Spring 2007

FINAL EXAM

(1) (12 points) Consider the ring

$$R = \mathbb{Z}_2 \times \mathbb{Z}_4 = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)\},\$$

with usual addition and multiplication.

- (a) List all the invertible elements in R.
- (b) List all the zero-divisors in R.
- (c) List all the idempotents in R.
- (d) Is R a commutative ring with unit?
- (e) Is R a field?
- (f) Let $S = \{(0,0), (0,1), (1,0), (1,1)\}$. Is S a subring of R?
- (g) Let $S = \{(0,0), (0,1), (0,2), (0,3)\}$. Is S a subring of R?

- **(2)** (10 points)
 - (a) Find the remainder when $f(x) = x^6 3x^4 + 5$ is divided by g(x) = x 2 in $\mathbb{Q}[x]$.

(b) For what value(s) of k is x + 1 a factor of $x^4 + 2x^3 + 3x^2 + kx + 4$ in $\mathbb{Z}_7[x]$?

(3) (9 points) Let $f(x) = x^3 + 2x^2 + x + 1$, viewed as a polynomial in $\mathbb{Z}_p[x]$. Determine whether f is irreducible when:

(a)
$$p = 2$$

(b)
$$p = 3$$

(c)
$$p = 5$$

(4) (10 points) Consider the polynomial

$$f(x) = 2x^4 + 3x^3 - 3x^2 - 5x - 6$$

(a) What are **all** the rational roots of f allowed by the Rational Root Test?

(b) Use the above information to factor f as a product of irreducible polynomials (over \mathbb{Q}).

(5) (12 points) Consider the polynomial

$$f(x) = x^5 - 5x^4 + 25x^2 - 10x + 5.$$

(a) Show that f is irreducible in $\mathbb{Q}[x]$.

(b) Show that the congruence-class ring $K=\mathbb{Q}[x]/(f(x))$ is a field.

(c) Is the extension $\mathbb{Q} \subset K$ algebraic? Why, or why not?

(d) Find a basis for K, viewed as a vector space over \mathbb{Q} .

(e) Compute $[K:\mathbb{Q}]$.

- (6) (12 points) Consider the field \mathbb{R} , viewed as a vector space over \mathbb{Q} .
 - (a) Is the subset $\{1, \sqrt{3}\}$ linearly independent (over \mathbb{Q})?

(b) Is $\sqrt{5}$ a linear combination of 1 and $\sqrt{3}$ (over \mathbb{Q})?

(c) Does the subset $\{1, \sqrt{3}\}$ span \mathbb{R} (as a vector space over \mathbb{Q})?

(d) Find the minimal polynomial of $\sqrt{1+\sqrt{5}}$ over \mathbb{Q} .

- (7) (9 points) Let $F \subset K$ be an extension of fields. Let $u \in K$ and $c \in F$.
 - (a) Suppose u is algebraic over F. Show that u + c is algebraic over F.

(b) Suppose u is transcendental over F. Show that u + c is transcendental over F.

(c) Show that F(u) = F(u+c).

- (8) (12 points) Let $p(x) = x^2 + bx + c$ be an **irreducible**, monic, quadratic polynomial in $\mathbb{Q}[x]$, and let $K = \mathbb{Q}[x]/(p(x))$.
 - (a) Show that K contains all the roots of p(x).

(b) Is K a splitting field for p? Why, or why not?

(c) Is the extension $\mathbb{Q} \subset K$ a normal extension? Why, or why not?

(d) Is the extension $\mathbb{Q} \subset K$ a Galois extension? Why, or why not?

(e) What is the Galois group of p?

- (9) (14 points) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ be the splitting field of $f(x) = (x^2 2)(x^2 5)$ over \mathbb{Q} .
 - (a) Find a basis of K, viewed as a vector space over \mathbb{Q} .

(b) What is a typical element of K, expressed in terms of this basis?

(c) What are the Galois automorphisms of the extension $\mathbb{Q} \subset K$? List them **all**, by indicating how they act on the basis found above (or, on the typical element of K).

(d) What is the Galois group $\operatorname{Gal}_{\mathbb{Q}}(K)$?

(e) List all the subgroups of $\operatorname{Gal}_{\mathbb{Q}}(K)$.
(f) For each such subgroup H , indicate the corresponding fixed field E_H .
(g) Put together all this information by drawing a diagram of the Galois correspondence for the extension $\mathbb{Q} \subset K$.