## Prof. Alexandru Suciu

**MATH 4565** 

TOPOLOGY

Spring 2010

## Degree

## 1. The path-lifting Lemma

We start with a basic technical lemma that will allow us to define the degree of a continuous map from the circle  $S^1$  to itself.

Let  $e: \mathbb{R} \to S^1$  be the "exponential map." If we view  $S^1$  as  $\{z \in \mathbb{C} \mid |z| = 1\}$ , then e is given by

(1) 
$$e(t) = \exp(2\pi i t).$$

Or, if we view  $S^1$  as  $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ , then e is given by

(2)  $e(t) = (\cos(2\pi t), \sin(2\pi t)).$ 

Clearly, e is a continuous surjection. Since both the functions  $t \mapsto \cos(2\pi t)$  and  $t \mapsto \sin(2\pi t)$  are periodic of period 1, we have

(3) 
$$e(t+C) = e(t)$$
, for every  $C \in \mathbb{Z}$ .

Moreover,

(4) 
$$e(t_1) = e(t_2) \iff t_1 - t_2 \in \mathbb{Z}$$

Finally, let I = [0, 1] be the unit interval in  $\mathbb{R}$ , and denote by  $e_0: I \to S^1$  the restriction of e to I. Again,  $e_0$  is a continuous surjection—in fact, a quotient map.

**Lemma 1.1** (Path-Lifting Lemma). Let  $g: [0,1] \to S^1$  be a continuous map, and let  $x \in \mathbb{R}$  such that e(x) = g(0). There is then a unique continuous map  $\tilde{g}: [0,1] \to \mathbb{R}$  such that

- $e(\tilde{g}(t)) = g(t)$ , for all  $t \in [0, 1]$ .
- $\tilde{g}(0) = x$ .

A map  $\tilde{g}$  as above is called a *lift* of g. Once we impose the "initial condition"  $\tilde{g}(0) = x$ , we get the *unique* lift of g at x. The situation is summarized in the commuting diagrams

$$[0,1] \xrightarrow{\tilde{g}} S^1 \qquad 0 \xrightarrow{\tilde{g}} g(0)$$

An analogous statement holds for homotopies.

**Lemma 1.2** (Homotopy-Lifting Lemma). Let  $F: I \times I \to S^1$  be a continuous map, and let  $x \in \mathbb{R}$  such that e(x) = F(0,0). There is then a unique continuous map  $\tilde{F}: I \times I \to \mathbb{R}$  such that

• 
$$e(\tilde{F}(t,s)) = g(t,s)$$
, for all  $t, s \in I \times I$ .  
•  $\tilde{F}(0,0) = x$ .

## 2. The degree of a circle map

Let  $f: S^1 \to S^1$  be a continuous map. Consider the composite

(5) 
$$g = f \circ e_0 \colon [0,1] \to S^1.$$

Clearly, g is a continuous map. Moreover, since  $e_0(0) = e_0(1) = (1, 0)$ , we have:

(6) 
$$g(0) = g(1).$$

By Lemma 1.1, the map g admits a lift  $\tilde{g}: [0,1] \to \mathbb{R}$ . That is to say,  $e \circ \tilde{g} = g$ . From (6), we get:

(7) 
$$e(\tilde{g}(0)) = e(\tilde{g}(1))$$

Applying (4), we obtain:

(8)  $\tilde{g}(1) - \tilde{g}(0) \in \mathbb{Z}$ 

This leads to the following definition

**Definition 2.1.** With notation as above, the *degree* of the map  $f: S^1 \to S^1$  is the integer deg(f) given by

$$\deg(f) = \tilde{g}(1) - \tilde{g}(0).$$

We must verify that  $\deg(f)$  is well-defined, i.e., does not depend on the choice of lift  $\tilde{g}$  for  $g = f \circ e_0$ . So, suppose  $\bar{g}: [0, 1] \to \mathbb{R}$  is another lift of g. Note that

(9) 
$$e(\tilde{g}(0)) = e(\bar{g}(0)) = g(0)$$

Thus, again by (4), we must have

(10) 
$$\tilde{g}(0) - \bar{g}(0) = C$$
, for some  $C \in \mathbb{Z}$ .

Consider the map  $\tilde{\tilde{g}} \colon [0,1] \to \mathbb{R}$  given by

(11) 
$$\tilde{\tilde{g}}(t) = \bar{g}(t) + C$$

We then have, by (3),

(12) 
$$e(\tilde{\tilde{g}}(t)) = e(\bar{g}(t) + C) = e(\bar{g}(t)) = g(t).$$

In other words,  $\tilde{\tilde{g}}$  is also a lift of g. Combining (9) and (11), we see that

(13) 
$$\tilde{\tilde{g}}(0) = \bar{g}(0) + C = \tilde{g}(0).$$

That is, the two lifts,  $\tilde{g}$  and  $\tilde{\tilde{g}}$ , agree at 0. By the uniqueness statement from Lemma 1.1, these two lifts must agree, for all  $t \in [0, 1]$ ; that is,

(14) 
$$\tilde{\tilde{g}} = \tilde{g}$$

In view of (11), this is the same as saying

(15) 
$$\tilde{g}(t) = \bar{g}(t) + C, \quad \text{for all } t \in [0, 1].$$

Therefore,

(16) 
$$\bar{g}(1) - \bar{g}(0) = (\tilde{g}(1) - C) - (\tilde{g}(0) - C) = \tilde{g}(1) - \tilde{g}(0),$$

showing that we obtain the same value for  $\deg(f)$ , whether we use the lift  $\tilde{g}$ , or the lift  $\bar{g}$  in Definition 2.1.

The following theorem shows that the degree of a circle map depends only on its homotopy class.

**Theorem 2.2.** Let  $f, g: S^1 \to S^1$  be two continuous maps. Suppose  $f \simeq g$ . Then  $\deg(f) = \deg(g)$ .

*Proof.* Let  $H: S^1 \times I \to S^1$  be a homotopy from f to g. That is,

(17) 
$$H(z,0) = f(z) \text{ and } H(z,1) = g(z), \text{ for all } z \in S^1.$$

Consider the map  $F: I \times I: S^1$  obtained by composing H with the map  $e_0 \times \mathrm{id}_I$ . By Lemma 1.2, the map F lifts to a map  $\tilde{F}: I \times I \to \mathbb{R}$ ; this maps fits into the commuting diagram



Clearly, the map  $t \mapsto \tilde{F}(t,0)$  is a lift of f, and likewise, the map  $t \mapsto \tilde{F}(t,1)$  is a lift of g. By the definition of degree, we have

(18) 
$$\deg(f) = \tilde{F}(1,0) - \tilde{F}(0,0)$$

(19) 
$$\deg(g) = \tilde{F}(1,1) - \tilde{F}(0,1)$$

Now consider the continuous map  $G: [0,1] \to \mathbb{Z}$  given by

(20) 
$$G(s) = \tilde{F}(1,s) - \tilde{F}(0,s), \text{ for all } s \in [0,1].$$

Since the interval [0,1] is connected, and  $\mathbb{Z}$  is discrete, the image of G must be a singleton, i.e., G is a constant function. Putting things together, we find:

(21) 
$$\deg(f) = G(0) = G(1) = \deg(g),$$

and this finishes the proof.