HOMEWORK 7

1. Let X be a topological space, and let $f: X \rightarrow S^{n}$ be a continuous map to the n sphere $(n \geq 0)$. Show that if f is not surjective, then f is homotopic to a constant map. [Hint: Use Proposition 6.5.]
2. Let $f: S^{1} \rightarrow S^{1}, f(x, y)=(-x,-y)$. Show that f is homotopic to the identity map. What is $\operatorname{deg}(f)$?
3. Let $f: S^{1} \rightarrow S^{1}, f(x, y)=(x,-y)$. What is $\operatorname{deg}(f)$?
4. Represent the circle S^{1} as the set of complex numbers z of absolute value 1. Consider the maps $f: S^{1} \rightarrow S^{1}$ and $g: S^{1} \rightarrow S^{1}$ given by $f(z)=z^{n}$ and $g(z)=1 / z^{n}$. Compute $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$.
5. Let A be a 3×3 matrix. Suppose all entries of A are real and non-negative, and that $\operatorname{det}(A) \neq 0$. Show that A has a positive real eigenvalue.
