Prof. Alexandru Suciu TOPOLOGY

Spring 2008

HOMEWORK 5

- **1.** Let $X = \{a, b, c\}$, with open sets \emptyset , $\{b\}$, $\{a, b\}$, $\{b, c\}$, $\{a, b, c\}$, and let $Y = \{0, 1\}$, with open sets \emptyset , $\{0\}$, $\{0, 1\}$. List all the open sets in the product topology for $X \times Y$. Is $X \times Y$ compact? connected? Hausdorff?
- **2.** Let $f: X \to Y$ be a continuous function. Suppose X is path-connected. Show that f(X) is also path-connected. As a corollary, show that path-connectedness is a topological invariant.
- **3.** Let \mathcal{T} and \mathcal{T}' be two topologies on the set X. Suppose $\mathcal{T}' \supset \mathcal{T}$. What does connectedness of X under one of these topologies imply about connectedness under the other?
- **4.** Let \mathcal{T} and \mathcal{T}' be two topologies on the set X. Suppose $\mathcal{T}' \supset \mathcal{T}$. What does compactness of X under one of these topologies imply about compactness under the other?
- **5.** Let A_1, \ldots, A_n be compact subspaces of a space X. Show that

$$A = \bigcup_{i=1}^{n} A_i$$

is also compact.