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Homotopy

Two continuous functions from one topological space to another are called homo-
topic if one can be “continuously deformed” into the other, such a deformation being
called a homotopy between the two functions. More precisely, we have the following
definition.

Definition 1. Let X, Y be topological spaces, and f, g : X → Y continuous maps. A
homotopy from f to g is a continuous function F : X × [0, 1]→ Y satisfying

F (x, 0) = f(x) and F (x, 1) = g(x), for all x ∈ X.

If such a homotopy exists, we say that f is homotopic to g, and denote this by f ' g.

If g = consty is a constant map (i.e., there is a y ∈ Y such that g(x) = y for all
x ∈ X), then we say that f is nullhomotopic.

Example 2. Let f, g : R→ R any two continuous, real functions. Then f ' g.
To see why this is the case, define a function F : R× [0, 1]→ R by

F (x, t) = (1− t) · f(x) + t · g(x).

Clearly, F is continuous, being a composite of continuous functions. Moreover,
F (x, 0) = (1−0) ·f(x) + 0 · g(x) = f(x), and F (x, 1) = (1−1) ·f(x) + 1 · g(x) = g(x).
Thus, F is a homotopy between f and g.

In particular, this shows that any continuous map f : R→ R is nullhomotopic.

This example can be generalized. First, we need a definition.

Definition 3. A subset A ⊂ Rn is said to be convex if, given any two points x, y ∈ A,
the straight line segment from x to y is contained in A. In other words,

(1− t)x + ty ∈ A, for every t ∈ [0, 1].

Proposition 4. Let A be a convex subset of Rn, endowed with the subspace topology,
and let X be any topological space. Then any two continuous maps f, g : X → A are
homotopic.

Proof. Use the same homotopy as in Example 2. Things work out, due to the con-
vexity assumption. �

Let X, Y be two topological spaces, and let Map(X, Y ) be the set of all continuous
maps from X to Y .

Theorem 5. Homotopy is an equivalence relation on Map(X, Y ).

Proof. We need to verify that ' is reflexive, symmetric, and transitive.
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Reflexivity (f ' f). The map F : X × I → Y , F (x, t) = f(x) is a homotopy from f
to f .

Symmetry (f ' g ⇒ g ' f). Suppose F : X × I → Y is a homotopy from f to g.
Then the map G : X × I → Y ,

G(x, t) = F (x, 1− t)

is a homotopy from g to f .

Transitivity (f ' g & g ' h⇒ f ' h). Suppose F : X × I → Y is a homotopy from
f to g and G : X × I → Y is a homotopy from g to h. Then the map H : X × I → Y ,

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1/2

G(x, 2t− 1) if 1/2 ≤ t ≤ 1

is a homotopy from f to h, as is readily checked. �

We shall denote the equivalence class of a map f : X → Y by [f ], and the of all
such homotopy classes by

[X, Y ] = Map(X, Y )/ ' .

Example 6. Let A be a convex subset of Rn, endowed with the subspace topology.
From Proposition 4, we see that [X, A] has exactly one element, for any topological
space X.

Proposition 7. Let f, f ′ : X → Y and g, g′ : Y → Z be continuous maps, and let
g ◦ f, g′ ◦ f ′ : X → Z be the respective composite maps. If f ' f ′ and g ' g′, then
g ◦ f ' g′ ◦ f ′.

Proof. Let F : X × I → Y be a homotopy between f and f ′ and G : Y × I → Z be a
homotopy between g and g′. Define a map H : X × I → Z by

H(x, t) = G(F (x, t), t).

Clearly, H is continuous, H(x, 0) = G(F (x, 0), 0) = G(f(x), 0) = g(f(x)), and
H(x, 1) = G(F (x, 1), 1) = G(f ′(x), 1) = g′(f ′(x)). Thus, H is a homotopy between
g ◦ f and g′ ◦ f ′. �

As a consequence, composition of continuous maps defines a function

[X, Y ]× [Y, Z]→ [X, Z], ([f ], [g]) 7→ [g ◦ f ].


