Handout 1:
Inverse images and direct images

Let $f: A \longrightarrow B$ be a function, and let $U \subset B$ be a subset. The inverse image of U is the set $f^{-1}(U) \subset A$ consisting of all elements $a \in A$ such that $f(a) \in U$.

The inverse image commutes with all set operations: For any collection $\left\{U_{i}\right\}_{i \in I}$ of subsets of B, we have the following identities for
(1) Unions:

$$
f^{-1}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} f^{-1}\left(U_{i}\right)
$$

(2) Intersections:

$$
f^{-1}\left(\bigcap_{i \in I} U_{i}\right)=\bigcap_{i \in I} f^{-1}\left(U_{i}\right)
$$

and for any subsets U and V of B, we have identities for
(3) Complements:

$$
\left(f^{-1}(U)\right)^{\complement}=f^{-1}\left(U^{\complement}\right)
$$

(4) Set differences:

$$
f^{-1}(U \backslash V)=f^{-1}(U) \backslash f^{-1}(V)
$$

(5) Symmetric differences:

$$
f^{-1}(U \triangle V)=f^{-1}(U) \triangle f^{-1}(V)
$$

In addition, for $X \subset A$ and $Y \subset B$, the inverse image satisfies the miscellaneous identities
(6) $\left(\left.f\right|_{X}\right)^{-1}(Y)=X \cap f^{-1}(Y)$
(7) $f\left(f^{-1}(Y)\right)=Y \cap f(A)$
(8) $X \subset f^{-1}(f(X))$, with equality if f is injective.

Let $f: A \longrightarrow B$ be a function, and let $U \subset A$ be a subset. The direct image of U is the set $f(U) \subset B$ consisting of all elements of B which equal $f(u)$ for some $u \in U$.

Direct images satisfy the following properties:
(1) Unions: For any collection $\left\{U_{i}\right\}_{i \in I}$ of subsets of A,

$$
f\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} f\left(U_{i}\right)
$$

(2) Intersections: For any collection $\left\{U_{i}\right\}_{i \in I}$ of subsets of A,

$$
f\left(\bigcap_{i \in I} U_{i}\right) \subset \bigcap_{i \in I} f\left(U_{i}\right)
$$

(3) Set difference: For any $U, V \subset A$,

$$
f(V \backslash U) \supset f(V) \backslash f(U)
$$

In particular, the complement of U satisfies $f\left(U^{\complement}\right) \supset f(A) \backslash f(U)$.
(4) Subsets: If $U \subset V \subset A$, then $f(U) \subset f(V) \subset B$.
(5) Inverse image of a direct image: For any $U \subset A$,

$$
f^{-1}(f(U)) \supset U
$$

with equality if f is injective.
(6) Direct image of an inverse image: For any $V \subset B$,

$$
f\left(f^{-1}(V)\right) \subset V
$$

with equality if f is surjective.

