FINAL EXAM

- **1.** Let X and Y be topological spaces, and $p_1: X \times Y \to X$ the first-coordinate projection map. Prove or disprove the following assertions.
 - (a) p_1 is a continuous map.
 - (b) p_1 is an open map.
 - (c) p_1 is a closed map.
- **2.** Let \mathbb{RP}^2 be the real projective plane, defined as the quotient space of $\mathbb{R}^3 \setminus \{0\}$ by the equivalence relation $\vec{x} \sim \vec{y}$ if $\vec{x} = \lambda \vec{y}$, for some $\lambda \in \mathbb{R} \setminus \{0\}$. Show that:
 - (a) \mathbb{RP}^2 is homeomorphic to the quotient space of S^2 , obtained by identifying antipodal points.
 - (b) \mathbb{RP}^2 is compact.
 - (c) \mathbb{RP}^2 is connected.
- **3.** Consider the unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let $f: S^1 \to S^1$ be the map defined by f(x, y) = (-x, y). What is the degree of f?
- **4.** (a) For each integer n, find a *connected* finite simplicial complex with Euler characteristic equal to n.
 - (b) Which integers n can occur as the Euler characteristic of a connected, 0-dimensional, finite simplicial complex?
 - (c) Which integers n can occur as the Euler characteristic of a connected, 1-dimensional, finite simplicial complex?
- 5. (a) Show that every triangulation of the Klein bottle has at least 7 vertices.
 - (b) Find a triangulation of the Klein bottle with exactly 8 vertices.
 - (c) Compute the Euler characteristic of the Klein bottle, using this triangulation.
- 6. Let K be the simplicial complex on vertex set $\{1, 2, 3, 4, 5, 6\}$, with maximal simplices $\{123, 124, 134, 234, 25, 26, 36, 56\}$.
 - (a) Draw a picture of the geometric realization of K.
 - (b) Write down the simplicial chain complex $C_*(K) = (C_n(K), \partial_n)_{n \ge 0}$, with \mathbb{Z}_2 coefficients.
 - (c) Compute the homology groups of K (with \mathbb{Z}_2 coefficients).
 - (d) What is the Euler characteristic of K?