Prof. Alexandru Suciu TOPOLOGY

MIDTERM EXAM

- **1.** Let \mathcal{T} and \mathcal{T}' be two topologies on a set X.
 - (a) Is their union, $\mathcal{T} \cup \mathcal{T}'$, a topology on X? Why, or why not?
 - (b) Is their intersection, $\mathcal{T} \cap \mathcal{T}'$, a topology on X? Why, or why not?
- **2.** Let $p: X \to Y$ be a continuous map. Suppose there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y. Show that p is a quotient map.
- **3.** Let $f: X \to Y$ and $g: X \to Y$ be two continuous maps. Suppose Y is a Hausdorff space, and that there is a dense subset $D \subset X$ such that f(x) = g(x) for all $x \in D$. Show that f(x) = g(x) for all $x \in X$.
- 4. Let $X = \{1, 2, 3, 4\}$, equipped with the topology

 $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 3, 4\}\}.$

Let $Y = \{a, b, c\}$.

- (a) Let $p: X \to Y$ be the function sending $1 \mapsto a, 2 \mapsto a, 3 \mapsto b, 4 \mapsto c$. Find the quotient topology \mathcal{T}_p on Y defined by the function p.
- (b) Let $q: X \to Y$ be the function sending $1 \mapsto a, 2 \mapsto b, 3 \mapsto b, 4 \mapsto c$. Find the quotient topology \mathcal{T}_q on Y defined by the function q.
- (c) Are the spaces (Y, \mathcal{T}_p) and (Y, \mathcal{T}_q) homeomorphic? If yes, write down a specific homeomorphism. If not, explain why not.
- 5. Suppose X is homeomorphic to X' and Y is homeomorphic to Y'. Show that $X \times Y$ is homeomorphic to $X' \times Y'$. (Both products are equipped with the product topology.)
- 6. Show that \mathbb{Z} , equipped with the digital line topology, is not homeomorphic to \mathbb{Z} , equipped with the finite complement topology.
- **7.** A space X is said to be *homogenous* if, for every two points $x_1, x_2 \in X$, there is a self-homeomorphism $f: X \to X$ such that $f(x_1) = x_2$. Prove that homogeneity is a topological property. That is to say, if X is homeomorphic to Y, and X is homogeneous, then Y is also homogeneous.
- 8. Let (X, d) be a metric space. Show that the distance function, $d: X \times X \to \mathbb{R}$, is continuous. (Here, X has the topology induced by d, and $X \times X$ has the product topology.)