Prof. Alexandru Suciu TOPOLOGY

FINAL EXAM

- **1.** Let $f: X \to Y$ be a continuous, bijective map. Recall the following theorem: If X is compact and Y is Hausdorff, then f is a homeomorphism. Show that both assumptions are necessary for the theorem to hold. That is,
 - (a) Provide an example where $f: X \to Y$ is a continuous, bijective map and X is compact, but f is not a homeomorphism.
 - (b) Provide an example where $f: X \to Y$ is a continuous, bijective map and Y is Hausdorff, but f is not a homeomorphism.
- **2.** Let $X = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$ be the set of all points in the plane with at least one rational coordinate. Show that X, with the induced topology, is a path-connected space.
- **3.** Let f and g be paths in $\mathbb{R}^2 \setminus \{0\}$. Show that f is homotopic to g.
- **4.** Consider the unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let $f: S^1 \to S^1$ be the map defined by f(x, y) = (-x, y). What is the degree of f?
- 5. Let $f: S^1 \to S^1$ be a continuous map. Suppose $\deg(f) \neq 0$. Show that f is surjective.
- **6.** Let X be a Hausdorff space, and let A be a retract of X. Show that A is a closed subset of X.
- **7.** A subspace $A \subset X$ is called a *deformation retract* of X if there is a retraction $r: X \to A$ with the property that $i \circ r \simeq id_X$. Prove the following: if A is a retract of a contractible space X, then A is a deformation retraction of X.
- 8. Prove the following:
 - (a) The open interval (0, 1) is *not* a retract of the real line \mathbb{R} .
 - (b) The closed interval [0,1] is a deformation retract of the real line \mathbb{R} .