Prof. Alexandru Suciu

MTH U371

LINEAR ALGEBRA

Spring 2006 SOLUTIONS TO QUIZ 7

1. Let $A=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5\end{array}\right]$.
(a) Find the eigenvalues of A.

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =(4-\lambda) \operatorname{det}\left[\begin{array}{cc}
2-\lambda & 2 \\
9 & -5-\lambda
\end{array}\right] \\
& =(4-\lambda)[(2-\lambda)(-5-\lambda)-18] \\
& =(4-\lambda)\left(\lambda^{2}+3 \lambda-28\right)=-(\lambda-4)^{2}(\lambda+7)
\end{aligned}
$$

Thus, the eigenvalues are $\lambda_{1}=4$ (with multiplicity 2), and $\lambda_{2}=-7$.
(b) Find a basis for each eigenspace of A.

$$
\begin{gathered}
E_{\lambda_{1}}=\operatorname{ker}\left(A-\lambda_{1} I_{3}\right)=\operatorname{ker}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 2 \\
0 & 9 & -9
\end{array}\right] \text { has basis the vectors }\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
E_{\lambda_{2}}=\operatorname{ker}\left(A-\lambda_{2} I_{3}\right)=\operatorname{ker}\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 9 & 2 \\
0 & 9 & 2
\end{array}\right] \text { has basis the vector }\left[\begin{array}{c}
0 \\
-2 \\
9
\end{array}\right]
\end{gathered}
$$

(c) Find a diagonal matrix D and an invertible matrix S such that $A=S \cdot D \cdot S^{-1}$.

$$
S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 1 & 9
\end{array}\right], \quad D=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -7
\end{array}\right]
$$

2. A 4×4 matrix A has eigenvalues $\lambda_{1}=-4, \lambda_{2}=-1, \lambda_{3}=2, \lambda_{4}=3$.
(a) What is the characteristic polynomial of A ?

$$
\operatorname{det}\left(A-\lambda I_{4}\right)=(\lambda+4)(\lambda+1)(\lambda-2)(\lambda-3)
$$

(b) Compute $\operatorname{tr}(A)$.

$$
\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=0
$$

(c) Compute $\operatorname{det}(A)$.

$$
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}=24
$$

(d) What are the eigenvalues of A^{2} ?

$$
\lambda_{1}^{2}=16, \lambda_{2}^{2}=1, \lambda_{3}^{2}=4, \lambda_{4}^{2}=9
$$

(e) Compute $\operatorname{tr}\left(A^{2}\right)$.

$$
\operatorname{tr}\left(A^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=30
$$

(f) Compute $\operatorname{det}\left(A^{2}\right)$.

$$
\operatorname{det}(A)=\operatorname{det}(A)^{2}=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \lambda_{4}^{2}=576
$$

3. Let $D=\left[\begin{array}{cc}-3 & 0 \\ 0 & 7\end{array}\right]$.

Note that D is a diagonal matrix, with distinct eigenvalues: $\lambda_{1}=-3$ and $\lambda_{2}=7$.
Also, $\operatorname{tr}(D)=4$ and $\operatorname{det}(D)=-21$.
(a) Let $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 3\end{array}\right]$. Is A similar to D ?

We have: $\operatorname{tr}(A)=4$ and $\operatorname{det}(A)=-22$.
Thus A cannot be similar to D (the determinants are not equal).
(b) Let $B=\left[\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right]$. Is B similar to D ?

We have: $\operatorname{tr}(B)=4$ and $\operatorname{det}(B)=-21$.
Thus B is similar to D (the two matrices have the same trace and determinant, and thus the same eigenvalues; moreover, B is diagonalizable, since the eigenvalues are distinct; thus, its diagonalization must be D).
(c) Let $C=\left[\begin{array}{cc}-4 & -3 \\ 5 & 9\end{array}\right]$. Is C similar to D ?

We have: $\operatorname{tr}(C)=5$ and $\operatorname{det}(C)=-21$.
Thus C cannot be similar to D (the traces are not equal).
4. A 2×2 matrix A matrix has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$, with corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) Find A.

$$
A=S \cdot D \cdot S^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right]
$$

(b) Consider the discrete dynamical system $\vec{x}(t+1)=A \vec{x}(t)$, with initial value $\vec{x}(0)=\left[\begin{array}{l}4 \\ 3\end{array}\right]$. Find a closed form for $\vec{x}(t)$.

$$
\begin{aligned}
\vec{x}(t) & =A^{t} \cdot \vec{x}(0)=S \cdot D^{t} \cdot S^{-1} \cdot \vec{x}(0) \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
2^{t} & 0 \\
0 & 5^{t}
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
3
\end{array}\right] \\
& =\left[\begin{array}{ll}
2^{t} & 5^{t} \\
0 & 5^{t}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
2^{t}+3 \cdot 5^{t} \\
3 \cdot 5^{t}
\end{array}\right]
\end{aligned}
$$

or:

$$
\begin{aligned}
& \vec{x}(0)=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=1 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3 \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \vec{x}(t)=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}=2^{t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3 \cdot 5^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

