Solutions to Quiz 5

1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}=\left[\begin{array}{l}4 \\ 3\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and write the result in the form $A=Q \cdot R$.

$$
\begin{aligned}
r_{11}=\left\|\vec{v}_{1}\right\| & =\sqrt{16+9}=5 \\
\vec{u}_{1}=\frac{1}{r_{11}} \vec{v}_{1} & =\frac{1}{5}\left[\begin{array}{l}
4 \\
3
\end{array}\right] \\
r_{12}=\vec{u}_{1} \cdot \vec{v}_{2} & =\frac{1}{5}\left[\begin{array}{c}
4 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\frac{2}{5} \\
\vec{v}_{2}^{\perp}=\vec{v}_{2}-r_{12} \vec{u}_{1} & =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]-\frac{2}{5} \cdot \frac{1}{5}\left[\begin{array}{c}
4 \\
3
\end{array}\right]=\frac{11}{25}\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \\
r_{22}=\left\|\vec{v}_{2}^{\perp}\right\| & =\frac{11}{25} \sqrt{9+16}=\frac{11}{5} \\
\vec{u}_{2}=\frac{1}{r_{22}} \vec{v}_{2}^{\perp} & =\frac{5}{11} \cdot \frac{11}{25}\left[\begin{array}{c}
-3 \\
4
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \\
A & =Q \cdot R \\
{\left[\begin{array}{cc}
\vec{v}_{1} & \vec{v}_{1}
\end{array}\right] } & =\left[\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right] \\
{\left[\begin{array}{cc}
4 & -1 \\
3 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
4 / 5 & -3 / 5 \\
3 / 5 & 4 / 5
\end{array}\right] \cdot\left[\begin{array}{cc}
5 & 2 / 5 \\
0 & 11 / 5
\end{array}\right]
\end{aligned}
$$

2. 6 points Consider the vectors $\vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}-2 \\ 5 \\ 5\end{array}\right]$.
(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^{3} spanned by \vec{v}.

$$
\begin{aligned}
& \vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \\
& A=\vec{u} \cdot \vec{u}^{\top}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \cdot \frac{1}{\sqrt{6}}\left[\begin{array}{lll}
1 & -1 & 2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]
\end{aligned}
$$

(b) Find the projection of \vec{w} onto the line L.

$$
\operatorname{proj}_{L}(\vec{w})=A \vec{w}=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
5 \\
5
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

3. 5 points Is there an orthogonal transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \text { and } T\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1
\end{array}\right] \text { ? Justify your answer, one way or the other. }
$$

An orthogonal transformation must preserve dot products of vectors:

$$
T \vec{x} \cdot T \vec{y}=\vec{x} \cdot \vec{y}, \quad \text { for all vectors } \vec{x}, \vec{y}
$$

In this situation, though:

$$
\begin{aligned}
T\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot T\left[\begin{array}{l}
1 \\
2
\end{array}\right] & =\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]=6-1=5 \\
{\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =1+6=7
\end{aligned}
$$

Thus, there is no such orthogonal transformation T.
4. 6 points Let A be an arbitrary $n \times n$ matrix. and let Q be an orthogonal $n \times n$ matrix. For each of the following questions, answer: "Yes, always," or "Sometimes yes, sometimes not," or "No, never." Justify your answer, as much as possible.
(a) The matrix $A A^{\top}$ is symmetric.

Yes, always: $\quad\left(A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top}$
(b) The matrix $A A^{\top}$ is invertible.

Sometimes yes, for example, when A is the identity matrix, and sometimes not, for example, when A is the zero matrix.
(c) The matrix $A A^{\top}$ is orthogonal.

Sometimes yes, for example, when A is the identity matrix, and sometimes not, for example, when A is the zero matrix.
(d) The matrix Q^{\top} is symmetric.

Sometimes yes, for example, when Q is the identity matrix, and sometimes not, for example, when $Q=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
(e) The matrix Q^{\top} is invertible.

Yes, always: $\quad Q Q^{\top}=I_{n}$, so Q is the inverse matrix to Q^{\top}.
(f) The matrix Q^{\top} is orthogonal.

Yes, always: $\quad Q^{\top}\left(Q^{\top}\right)^{\top}=Q^{\top} Q=I_{n}$.

