MTH U371

Prof. Alexandru Suciu
 LINEAR ALGEBRA
 Spring 2006 QUIZ 7

1. 7 points Let $A=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find a basis for each eigenspace of A.
(c) Find a diagonal matrix D and an invertible matrix S such that $A=S \cdot D \cdot S^{-1}$. (You need not compute S^{-1}.)
2. 6 points A 4×4 matrix A has eigenvalues $\lambda_{1}=-4, \lambda_{2}=-1, \lambda_{3}=2, \lambda_{4}=3$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$.
(c) Compute $\operatorname{det}(A)$.
(d) What are the eigenvalues of A^{2} ?
(e) Compute $\operatorname{tr}\left(A^{2}\right)$.
(f) Compute $\operatorname{det}\left(A^{2}\right)$.
3. 6 points Let $D=\left[\begin{array}{cc}-3 & 0 \\ 0 & 7\end{array}\right]$.
(a) Let $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 3\end{array}\right]$. Is A similar to D ? Explain why, or why not.
(b) Let $B=\left[\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right]$. Is B similar to D ? Explain why, or why not.
(c) Let $C=\left[\begin{array}{cc}-4 & -3 \\ 5 & 9\end{array}\right]$. Is C similar to D ? Explain why, or why not.
4. 6 points A 2×2 matrix A matrix has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$, with corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) Find A.
(b) Consider the discrete dynamical system $\vec{x}(t+1)=A \vec{x}(t)$, with initial value $\vec{x}(0)=\left[\begin{array}{l}4 \\ 3\end{array}\right]$.

Find a closed form for $\vec{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$.

