MTH U371

1. 9 points

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 2 & 0\\ 1 & -1\\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 3\\ 2\\ -1 \end{bmatrix}$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto im A.

(c) Determine the error $||\vec{b} - A\vec{x}^*||.$

2. 6 points Let A, B, C be three square matrices, with det A = -1, det B = 0, det C = 3. In the following, circle the correct answer.

• Is A invertible?	Yes, always	No, never	Sometimes yes, sometimes not
• Is <i>B</i> invertible?	Yes, always	No, never	Sometimes yes, sometimes not
• Is C invertible?	Yes, always	No, never	Sometimes yes, sometimes not
• Is A orthogonal?	Yes, always	No, never	Sometimes yes, sometimes not
• Is <i>B</i> orthogonal?	Yes, always	No, never	Sometimes yes, sometimes not
• Is C orthogonal?	Yes, always	No, never	Sometimes yes, sometimes not

- **3.** 4 points Let A and B be two 4×4 matrices, with det A = -2 and det B = 5. Compute:
 (a) det (3B) =
 - (b) det $(A^5) =$
 - (c) det $((B^{\top})^{-1}) =$
 - (d) det $(A \cdot B^2 \cdot A^{-1} \cdot B^{\top}) =$
- 4. 6 points Consider a 3×3 matrix A with rows $\vec{v}_1, \vec{v}_2, \vec{v}_3$. Suppose det(A) = 7. Compute:

(a) det
$$\begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 - 3\vec{v}_1 \\ \vec{v}_3 + \vec{v}_1 \end{bmatrix}$$

(b) det
$$\begin{bmatrix} \vec{v}_3 \\ \vec{v}_2 \\ \vec{v}_1 \end{bmatrix}$$

(c) det
$$\begin{bmatrix} 3\vec{v}_1 \\ \vec{v}_3 + \vec{v}_1 \\ \vec{v}_2 \end{bmatrix}$$