1. 9 points
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]
$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto im A.
(c) Determine the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$.
2. 6 points Let A, B, C be three square matrices, with $\operatorname{det} A=-1$, $\operatorname{det} B=0, \operatorname{det} C=$ 3. In the following, circle the correct answer.

- Is A invertible? Yes, always No, never Sometimes yes, sometimes not
- Is B invertible? Yes, always No, never Sometimes yes, sometimes not
- Is C invertible? Yes, always No, never Sometimes yes, sometimes not
- Is A orthogonal? Yes, always No, never Sometimes yes, sometimes not
- Is B orthogonal? Yes, always No, never Sometimes yes, sometimes not
- Is C orthogonal? Yes, always No, never Sometimes yes, sometimes not

3. 4 points Let A and B be two 4×4 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=5$. Compute:
(a) $\operatorname{det}(3 B)=$
(b) $\operatorname{det}\left(A^{5}\right)=$
(c) $\operatorname{det}\left(\left(B^{\top}\right)^{-1}\right)=$
(d) $\operatorname{det}\left(A \cdot B^{2} \cdot A^{-1} \cdot B^{\top}\right)=$
4. 6 points Consider a 3×3 matrix A with rows $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Suppose $\operatorname{det}(A)=7$. Compute:
(a) $\operatorname{det}\left[\begin{array}{c}\vec{v}_{1} \\ \vec{v}_{2}-3 \vec{v}_{1} \\ \vec{v}_{3}+\vec{v}_{1}\end{array}\right]$
(b) $\operatorname{det}\left[\begin{array}{l}\vec{v}_{3} \\ \vec{v}_{2} \\ \vec{v}_{1}\end{array}\right]$
(c) $\operatorname{det}\left[\begin{array}{c}3 \vec{v}_{1} \\ \vec{v}_{3}+\vec{v}_{1} \\ \vec{v}_{2}\end{array}\right]$
