1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}=\left[\begin{array}{l}4 \\ 3\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and write the result in the form $A=Q \cdot R$.
2. 6 points Consider the vectors $\vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}-2 \\ 5 \\ 5\end{array}\right]$.
(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^{3} spanned by \vec{v}.
(b) Find the projection of \vec{w} onto the line L.
3. 5 points Is there an orthogonal transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \text { and } T\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \text { ? Justify your answer, one way or the other. }
$$

4. 6 points Let A be an arbitrary $n \times n$ matrix. and let Q be an orthogonal $n \times n$ matrix. For each of the following questions, answer: "Yes, always," or "Sometimes yes, sometimes not," or "No, never." Justify your answer, as much as possible.
(a) The matrix $A A^{\top}$ is symmetric.
(b) The matrix $A A^{\top}$ is invertible.
(c) The matrix $A A^{\top}$ is orthogonal.
(d) The matrix Q^{\top} is symmetric.
(e) The matrix Q^{\top} is invertible.
(f) The matrix Q^{\top} is orthogonal.
