MTH U371

1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, and write the result in the form $A = Q \cdot R$.

2. 6 points Consider the vectors
$$\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} -2 \\ 5 \\ 5 \end{bmatrix}$.

(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^3 spanned by \vec{v} .

(b) Find the projection of \vec{w} onto the line L.

3. 5 points Is there an orthogonal transformation $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ such that $T \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $T \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$? Justify your answer, one way or the other.

- 4. 6 points Let A be an arbitrary $n \times n$ matrix. and let Q be an orthogonal $n \times n$ matrix. For each of the following questions, answer: "Yes, always," or "Sometimes yes, sometimes not," or "No, never." Justify your answer, as much as possible.
 - (a) The matrix AA^{\top} is symmetric.
 - (b) The matrix AA^{\top} is invertible.
 - (c) The matrix AA^{\top} is orthogonal.
 - (d) The matrix Q^{\top} is symmetric.
 - (e) The matrix Q^{\top} is invertible.
 - (f) The matrix Q^{\top} is orthogonal.