MTH U371

Spring 2006

1. 6 points Let
$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & -4 \\ -1 & 5 & -7 \end{bmatrix}$$
.

Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

2. 6 points For which value(s) of the constant k do the vectors below for a basis of \mathbb{R}^4 ?

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\0\\k \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\1\\0\\4 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\0\\1\\3 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 3\\-2\\1\\k \end{bmatrix}.$$

MTH U371

as its row-reduced echelon form.

- (a) Find a basis for the image of A.
- (b) Find a basis for the kernel of A.
- (c) Compute $\dim(\operatorname{im} A)$ and $\dim(\ker A)$.

4. 5 points Consider the 5 × 4 matrix $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \end{bmatrix}$. We are told the vector $\begin{bmatrix} -5\\4\\-3\\2 \end{bmatrix}$ is in

the kernel of A. Write \vec{v}_4 as a linear combination of \vec{v}_1 , \vec{v}_2 , \vec{v}_3 .