1. 6 points Let $A=\left[\begin{array}{ccc}3 & 0 & 1 \\ 0 & 3 & -4 \\ -1 & 5 & -7\end{array}\right]$.

Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
2. 6 points For which value(s) of the constant k do the vectors below for a basis of \mathbb{R}^{4} ?

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
k
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
4
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{c}
3 \\
-2 \\
1 \\
k
\end{array}\right] .
$$

3. 8 points The matrix $A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20\end{array}\right]$ has the matrix $E=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its row-reduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute $\operatorname{dim}(\operatorname{im} A)$ and $\operatorname{dim}(\operatorname{ker} A)$.
4. 5 points Consider the 5×4 matrix $A=\left[\begin{array}{llll}\vec{v} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4}\end{array}\right]$. We are told the vector $\left[\begin{array}{c}-5 \\ 4 \\ -3 \\ 2\end{array}\right]$ is in the kernel of A. Write \vec{v}_{4} as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
