1	2	3	4	5	6	7	8	Σ

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MTH U371

FINAL EXAM

Spring 2006

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces. Calculators are permitted. A single sheet of formulas is allowed. **Show your work.** If there is not enough room to show your work, use the back page.

1. 12 points Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\3\\5 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \qquad \vec{v}_3 = \begin{bmatrix} -1\\1\\3 \end{bmatrix}.$$

(a) Are the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linearly independent or dependent? If they are independent, explain why. If they are dependent, exhibit a linear dependence relation among them.

(b) Write the vector
$$\vec{b} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

MTH U371

Final Exam

2.	10 points The matrix $A =$	$\begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$	0 1	$-1 \\ 6 \\ 0$	2 3	$\begin{bmatrix} -3 \\ -2 \\ -2 \end{bmatrix}$	has $\operatorname{rref}(A) =$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$-1 \\ 10 \\ 0$	2 -5	-3^{-3}_{-10}
	1	$\begin{vmatrix} 1\\ 3 \end{vmatrix}$	1 1	$\frac{9}{7}$	$-3 \\ 1$	$\begin{bmatrix} 7\\1 \end{bmatrix}$		$\begin{vmatrix} 0\\0 \end{vmatrix}$	$0\\0$	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 0
	as its row-reduced echelon for	m.				-		L				_

(a) Find a basis for the image of A.

(b) Find a basis for the kernel of A.

- (c) Compute:
 - rank A =
 - dim $(\ker A) =$
 - dim $(\operatorname{im} A)^{\perp} =$
 - dim $(\ker A)^{\perp} =$

3. 12 pts

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 2\\ 2 & 1\\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} -4\\ 3\\ 2 \end{bmatrix}$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto the image of A.

(c) Determine the error $||\vec{b} - A\vec{x}^*||$.

4. 12 pts Apply the Gram-Schmidt process to the vectors

$$\vec{v}_1 = \begin{bmatrix} 0\\3\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 4\\0\\-3 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix},$$

and write the result in the form A = QR, with Q orthogonal and R upper-diagonal.

- 5. 14 pts Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that rotates the *xy*-plane by 30° in a counterclockwise direction, and reflects the *z*-axis about the *xy*-plane.
 - (a) Find the matrix A corresponding to T.

- (b) Is A orthogonal? Why, or why not?
- (c) What is det(A)?
- (d) What is det(4A)?
- (e) Find A^{-1} .

(f) What is the image of the vector
$$\begin{bmatrix} 2\\-1\\3 \end{bmatrix}$$
 under the map T?

6. 12 pts Let $A = \begin{bmatrix} 3 & 4 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. (a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A.

(c) Find a basis for each eigenspace of A.

(d) Find an invertible matrix S and a diagonal matrix D such that $A = S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1} .] 7. 14 points A 2×2 matrix A matrix has eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 1$, with corresponding eigenvectors $\vec{v_1} = \begin{bmatrix} 2\\3 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 0\\1 \end{bmatrix}$. (a) Find A.

(b) Consider the discrete dynamical system $\vec{x}(t+1) = A\vec{x}(t)$, with initial value $\vec{x}(0) = \begin{bmatrix} 2\\ -5 \end{bmatrix}$. Find a closed form for $\vec{x}(t) = \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}$.

(c) What is $\vec{x}(4)$?

- 8. 14 pts Find the singular value decomposition for the matrix $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$, as follows: (a) Find the symmetrized matrix $B = A^{\top}A$.
 - (b) Find the eigenvalues λ_1 and λ_2 of B.
 - (c) Find the singular values σ_1 and σ_2 of A.
 - (d) Find eigenvectors \vec{w}_1 and \vec{w}_2 for B.
 - (e) Now find an orthonormal set of eigenvectors, \vec{v}_1 and \vec{v}_2 .
 - (f) Use the vectors \vec{v}_i , the singular values σ_i , and the matrix A to find another orthonormal set, \vec{u}_1 and \vec{u}_2 .
 - (g) Put everything together to arrive at the SVD decomposition, $A = U \cdot \Sigma \cdot V^{\top}$. Check your answer!