Prof. Alex Suciu

MTH U371

1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$, and write the result in the form $A=Q \cdot R$.

$$
\begin{aligned}
& r_{11}=\left\|\vec{v}_{1}\right\| \\
& =\sqrt{9+1}=\sqrt{10} \\
& \vec{u}_{1}=\frac{1}{r_{11}} \vec{v}_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& r_{12}=\vec{u}_{1} \cdot \vec{v}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
0
\end{array}\right]=-\frac{6}{\sqrt{10}}=-\frac{3}{5} \sqrt{10} \\
& \vec{w}_{2}=\vec{v}_{2}-r_{12} \vec{u}_{1}=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]-\left(-\frac{3}{5} \sqrt{10}\right) \frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]+\frac{3}{5}\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \\
& r_{22}=\left\|\vec{w}_{2}\right\| \\
& \vec{u}_{2}=\frac{1}{r_{22}} \vec{w}_{2}=\frac{1}{5} \sqrt{1+9}=\frac{\sqrt{10}}{5}
\end{aligned}
$$

$$
\begin{aligned}
A & =Q \cdot R \\
{\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{1}
\end{array}\right] } & =\left[\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right] \\
{\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right] } & =\left(\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right]\right) \cdot\left(\sqrt{10}\left[\begin{array}{cc}
1 & -\frac{3}{5} \\
0 & \frac{1}{5}
\end{array}\right]\right)
\end{aligned}
$$

2. 7 points

Consider the vectors $\vec{v}=\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}4 \\ 1 \\ 3 \\ 1\end{array}\right]$.
(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^{4} spanned by \vec{v}.

$$
\begin{aligned}
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v} & =\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
2 \\
-2
\end{array}\right] \\
A=\vec{u} \cdot \vec{u}^{\top} & =\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
2 \\
-2
\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{llll}
1 & 0 & 2 & -2
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{cccc}
1 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 \\
2 & 0 & 4 & -4 \\
-2 & 0 & -4 & 4
\end{array}\right]
\end{aligned}
$$

(b) Find the projection of \vec{w} onto the line L.

$$
\operatorname{proj}_{L}(\vec{w})=A \vec{w}=\frac{1}{9}\left[\begin{array}{cccc}
1 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 \\
2 & 0 & 4 & -4 \\
-2 & 0 & -4 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
1 \\
3 \\
1
\end{array}\right]=\frac{8}{9}\left[\begin{array}{c}
1 \\
0 \\
2 \\
-2
\end{array}\right]
$$

3. 6 points

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a 3×3 matrix.
(a) Is the matrix $B=A^{\top} A A^{\top}$ symmetric? Justify your answer.

We have

$$
B^{\top}=\left(A^{\top} A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}\left(A^{\top}\right)^{\top}=A A^{\top} A
$$

and this does not equal B, in general. Thus B is not symmetric.
(b) Is the matrix $B=2 A+2 A^{\top}$ symmetric? Justify your answer.

We have

$$
B^{\top}=\left(2 A+2 A^{\top}\right)^{\top}=2 A^{\top}+2\left(A^{\top}\right)^{\top}=2 A^{\top}+2 A=B
$$

Thus B is symmetric.
(c) Suppose A is orthogonal. What is A^{-1} ?
A orthogonal means $A A^{\top}=I_{3}$.
Hence A is invertible, with inverse

$$
A^{-1}=A^{\top}=\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right]
$$

4. 9 points
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$, where

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
3 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
A^{\top} A \vec{x}^{*} & =A^{\top} B \\
{\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \cdot \vec{x}^{*} } & =\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
{\left[\begin{array}{cc}
11 & 4 \\
4 & 2
\end{array}\right] \cdot \vec{x}^{*} } & =\left[\begin{array}{l}
8 \\
3
\end{array}\right] \\
\vec{x}^{*} & =\left[\begin{array}{cc}
11 & 4 \\
4 & 2
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
8 \\
3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
2 & -4 \\
-4 & 11
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
\vec{x}^{*} & =\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto $\operatorname{im} A$.

$$
\operatorname{proj}_{i m}(\vec{b})=A \vec{x}^{*}=\left[\begin{array}{ll}
3 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
13 \\
5 \\
4
\end{array}\right]=\left[\begin{array}{c}
\frac{13}{6} \\
\frac{5}{6} \\
\frac{2}{3}
\end{array}\right]
$$

(c) Determine the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$.

$$
\left\|\vec{b}-A \vec{x}^{*}\right\|=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
13 \\
5 \\
4
\end{array}\right]\right\|=\left\|\frac{7}{6}\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\|=\frac{7}{6} \sqrt{6}=\frac{7}{\sqrt{6}}
$$

