Prof. A. Suciu

MTH U371 - LINEAR ALGEBRA SOLUTIONS to QUIZ 3

1. 12 points Let $A=\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & 3 \\ 2 & 0 & 4 & -1 & 7 \\ -1 & 3 & 0 & 6 & 2\end{array}\right]$.
(a) Find the row reduced echelon form of A.

$$
\operatorname{rref} A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 2 / 3 & 0 & 11 / 3 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

(b) Find a basis for the image of A.

Columns of A corresponding to the pivot columns of ref A :

$$
\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right]\right\}
$$

(c) Find a basis for the kernel of A.

Independent solution vectors to equation $(\operatorname{rref} A) \cdot \vec{x}=\overrightarrow{0}$:

$$
\left\{\left[\begin{array}{c}
-3 \\
-11 / 3 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
-2 / 3 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

(d) Find the rank and the nullity of A.

$$
\begin{aligned}
& \operatorname{rank} A=\operatorname{dim}(\operatorname{im} A)=\#\{\text { basis vectors of } \operatorname{im} A\}=3 \\
& \text { nullity } A=\operatorname{dim}(\operatorname{ker} A)=\#\{\text { basis vectors of } \operatorname{ker} A\}=2
\end{aligned}
$$

2. 10 points Consider the folowing four vectors in \mathbb{R}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3 \\
2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
0 \\
4 \\
0 \\
-4
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
4
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{c}
0 \\
1 \\
-5 \\
4
\end{array}\right] .
$$

Let A be the 4×4 matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 4 & -1 & 1 \\
-3 & 0 & -2 & -5 \\
2 & -4 & 4 & 4
\end{array}\right] \longrightarrow \\
& \operatorname{rref} A=\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -7 / 2 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \\
&(\operatorname{rref} A) \cdot \vec{x}=\overrightarrow{0} \quad \longrightarrow \quad \vec{x}=t \cdot\left[\begin{array}{c}
-5 \\
7 / 2 \\
5 \\
1
\end{array}\right]
\end{aligned}
$$

(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
$\operatorname{rank} A=\#\{$ pivot columns of $\operatorname{rref} A\}=3$, which is less than $\#\{$ columns of $A\}=4$.
Thus, the column vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are linearly dependent.
A linear dependence is given by any non-zero vector in $\operatorname{ker} A=\operatorname{ker}(\operatorname{rref} A)$.
For instance, picking $t=1$ gives:

$$
-5 \vec{v}_{1}+\frac{7}{2} \vec{v}_{2}+5 \vec{v}_{3}+\vec{v}_{4}=\overrightarrow{0}, \quad \text { or } \quad \vec{v}_{4}=5 \vec{v}_{1}-\frac{7}{2} \vec{v}_{2}-5 \vec{v}_{3} .
$$

(b) Do the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form a basis for \mathbb{R}^{4} ? Explain your answer.

No. The vectors are not independent, thus, per force, they do not form a basis.
(c) Do the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ span \mathbb{R}^{4} ? Explain your answer.

No. For, if 4 vectors span \mathbb{R}^{4}, they must form a basis. (Recall, a basis is a minimal spanning set, and $\operatorname{dim} \mathbb{R}^{4}=4$ is the number of vectors in any basis for \mathbb{R}^{4}; so, if the minimum number of vectors in a spanning set is attained, that set must form a basis.) By the preceding, we know this is not the case.
3. 8 points Let V be the subspace of \mathbb{R}^{3} defined by the equation $2 x_{1}-3 x_{2}+4 x_{3}=0$.
(a) Express V as the kernel of a matrix A.

$$
V=\operatorname{ker}(A), \quad \text { where } \quad A=\left[\begin{array}{lll}
2 & -3 & 4
\end{array}\right] .
$$

(b) Express V as the image of a matrix B.

$$
V=\operatorname{im}(B), \quad \text { where } \quad B=\left[\begin{array}{cc}
3 & -2 \\
2 & 0 \\
0 & 1
\end{array}\right]
$$

(c) Find a basis for V.

$$
\left\{\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\}
$$

