1. 5 points Use Gaussian elimination to find the inverse of following matrix. Indicate for each step which row operation you use.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 4 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

Compute:

$$
\begin{aligned}
& {\left[A \vdots I_{3}\right] \xrightarrow{\text { rref }}\left[I_{3} \vdots A^{-1}\right]} \\
& A^{-1}=\left[\begin{array}{ccc}
-2 & \frac{1}{2} & 2 \\
1 & 0 & -1 \\
3 & -\frac{1}{2} & -2
\end{array}\right]
\end{aligned}
$$

2. 5 points For which choices of the constant k is the following matrix invertible?

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
4 & 5 & k^{2} \\
-3 & 0 & k
\end{array}\right]
$$

Compute:

$$
A \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & k^{2}-8 \\
0 & 0 & -3 k^{2}+k+30
\end{array}\right]
$$

Thus, A is invertible for all values of k, except those for which $-3 k^{2}+k+30=0$; that is, A is invertible $\Longleftrightarrow k \neq-3$ and $k \neq \frac{10}{3}$.
3. 5 points Find the matrix A of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
T\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2
\end{array}\right], \quad T\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right] .
$$

We have:

$$
A \cdot\left[\begin{array}{ll}
5 & 3 \\
4 & 2
\end{array}\right]=\left[\begin{array}{cc}
6 & 7 \\
-2 & 1
\end{array}\right]
$$

Hence:

$$
A=\left[\begin{array}{cc}
6 & 7 \\
-2 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 3 \\
4 & 2
\end{array}\right]^{-1}=\left[\begin{array}{cc}
6 & 7 \\
-2 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & \frac{3}{2} \\
2 & -\frac{5}{2}
\end{array}\right]=\left[\begin{array}{ll}
8 & -\frac{17}{2} \\
4 & -\frac{11}{2}
\end{array}\right] .
$$

4. 4 points Sketch the image of the unit square under the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right] \vec{x}
$$

5. 6 points Find the matrices of the following linear transformations:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, a clockwise rotation of 30°, followed by a dilation by a factor of 5 .

$$
A=5 \cdot\left[\begin{array}{cc}
\cos \left(-30^{\circ}\right) & -\sin \left(-30^{\circ}\right) \\
\sin \left(-30^{\circ}\right) & \cos \left(-30^{\circ}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{5 \sqrt{3}}{2} & \frac{5}{2} \\
-\frac{5}{2} & \frac{5 \sqrt{3}}{2}
\end{array}\right]
$$

(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the reflection in the $x-z$-plane, followed by a dilation by a factor of 2 .

$$
A=2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

6. 5 points Find the projection of the vector $\vec{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ onto the line L in the direction of the vector $\vec{w}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$.

Unit vector in the direction of w :

$$
\vec{u}=\frac{1}{\|\vec{w}\|} \cdot \vec{w}=\frac{1}{5}\left[\begin{array}{c}
4 \\
-3
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{3}{5}
\end{array}\right] .
$$

Dot product of \vec{u} and \vec{v} :

$$
\vec{u} \cdot \vec{v}=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{3}{5}
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{8}{5}-\frac{3}{5}=1
$$

Hence:

$$
\operatorname{proj}_{L}(\vec{v})=(\vec{u} \cdot \vec{v}) \cdot \vec{u}=1 \cdot\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{3}{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{3}{5}
\end{array}\right]
$$

