Prof. A. Suciu . MTH U371-LINEAR ALGEBRA . Spring 2005 Sample Quiz 4, with Solutions

1. Let A be an orthogonal $n \times n$ matrix (recall this means that the columns of A are orthonormal), and let A^{\top} be its transpose.
(a) Find:

$$
\begin{aligned}
& A A^{\top}=I_{n} \quad[\text { This is equivalent to columns of } A \text { being orthonormal }] . \\
& A^{\top} A=I_{n} \quad\left[\text { Since, by the above, } A^{\top}=A^{-1}, \text { and we know that } A^{-1} A=I_{n}\right] .
\end{aligned}
$$

(b) Find:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{ker} A)=0 \quad[\text { Since } A \text { is invertible, and so ker } A=\{\overrightarrow{0}\}] . \\
& \operatorname{dim}(\operatorname{im} A)=n \quad[\text { Since } \operatorname{dim}(\operatorname{im} A)+\operatorname{dim}(\operatorname{ker} A)=n] .
\end{aligned}
$$

(c) Is A^{\top} also orthogonal? Explain your answer.

Yes, since A orthogonal $\longleftrightarrow A A^{\top}=I_{n} \longleftrightarrow A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A=I_{n} \longleftrightarrow A^{\top}$ orthogonal.
(d) Are the rows of A orthonormal? Explain your answer.

Yes, since the rows of A are the columns of A^{\top}, which we just saw is orthogonal.
(e) The $Q R$-factorization of A is given by:

$$
\begin{aligned}
& Q=A \text { [Since } A \text { is already orthogonal, so its columns make up } Q] . \\
& R=I_{n}\left[\text { Since } A=Q R \text { gives } R=Q^{-1} A=A^{-1} A=I_{n}\right] .
\end{aligned}
$$

2. Find all orthogonal matrices of the form

$$
A=\left[\begin{array}{rrr}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & a \\
-\frac{\sqrt{2}}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} & b \\
\frac{\sqrt{2}}{2 \sqrt{3}} & -\frac{1}{\sqrt{3}} & c
\end{array}\right]
$$

The orthonormality conditions $\vec{v}_{1} \cdot \vec{v}_{3}=0, \vec{v}_{2} \cdot \vec{v}_{3}=0, \vec{v}_{3} \cdot \vec{v}_{3}=1$ yield:

$$
\begin{aligned}
a-\frac{1}{2} b+\frac{1}{2} c & =0 \\
a+b-c & =0 \\
a^{2}+b^{2}+c^{2} & =1
\end{aligned}
$$

The first two equations give $b=c$ and $a=c-b=0$. Plugging into the third equation gives $2 b^{2}=1$, and so $b= \pm \frac{1}{\sqrt{2}}$. The two solutions for A are:

$$
A=\left[\begin{array}{rrr}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{\sqrt{2}}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{\sqrt{2}}{2 \sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{rrr}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{\sqrt{2}}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{\sqrt{2}}{2 \sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

3. Let $\quad \vec{v}_{1}=\left[\begin{array}{c}5 \\ 12\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$.
(a) Find the lengths of \vec{v}_{1} and \vec{v}_{2}, and compute the dot product $\vec{v}_{1} \cdot \vec{v}_{2}$.

$$
\begin{aligned}
\left\|\vec{v}_{1}\right\| & =\sqrt{5^{2}+12^{2}}=13 \\
\left\|\vec{v}_{2}\right\| & =\sqrt{4^{2}+(-3)^{2}}=5 \\
\vec{v}_{1} \cdot \vec{v}_{2} & =5 \cdot 4+12 \cdot(-3)=-16
\end{aligned}
$$

(b) Find unit vectors in the direction of \vec{v}_{1} and \vec{v}_{2}, respectively.

$$
\begin{aligned}
& \vec{w}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\left[\begin{array}{c}
\frac{5}{13} \\
\frac{12}{13}
\end{array}\right] \\
& \overrightarrow{w_{2}}=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}=\left[\begin{array}{r}
\frac{4}{5} \\
-\frac{3}{5}
\end{array}\right]
\end{aligned}
$$

(c) Find the angle between \vec{v}_{1} and \vec{v}_{2}.

We have: $\cos \theta=\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\| \cdot\left\|\vec{v}_{2}\right\|}=-\frac{16}{65}$, and so $\theta=1.81951$ radians $\left(\right.$ or, $\left.\theta=104.25^{\circ}\right)$.
(d) Find the projection of \vec{v}_{2} onto the subspace of \mathbb{R}^{2} spanned by \vec{v}_{1}.

$$
\operatorname{proj}_{V_{1}} \vec{v}_{2}=\left(\vec{w}_{1} \cdot \vec{v}_{2}\right) \cdot \vec{w}_{1}=-\frac{16}{13} \cdot \frac{1}{13}\left[\begin{array}{c}
5 \\
12
\end{array}\right]=\left[\begin{array}{c}
-\frac{80}{169} \\
-\frac{192}{169}
\end{array}\right] .
$$

(e) Let $A=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$. Use the Gram-Schmidt process to find the $Q R$-factorization of A.

We have:

$$
\begin{aligned}
\vec{a}_{2} & =\vec{v}_{2}-\operatorname{proj}_{V_{1}} \vec{v}_{2}=\left[\begin{array}{r}
\frac{756}{169} \\
-\frac{315}{169}
\end{array}\right] \\
\|\vec{a}\| & =\frac{63}{13} \\
\vec{w}_{2} & =\frac{\vec{a}_{2}}{\left\|\vec{a}_{2}\right\|}=\left[\begin{array}{r}
\frac{12}{13} \\
-\frac{5}{13}
\end{array}\right]
\end{aligned}
$$

Thus:

$$
\begin{array}{ll}
Q=\left[\begin{array}{ll}
\vec{w}_{1} & \vec{w}_{2}
\end{array}\right] & =\left[\begin{array}{cc}
\frac{5}{13} & \frac{12}{13} \\
\frac{13}{13} & -\frac{5}{13}
\end{array}\right] \\
R=\left[\begin{array}{cc}
\left\|\vec{v}_{1}\right\| & \vec{w}_{1} \cdot \vec{v}_{2} \\
0 & \left\|\vec{v}_{2}\right\|
\end{array}\right] & =\left[\begin{array}{cc}
13 & -\frac{16}{13} \\
0 & \frac{63}{13}
\end{array}\right]
\end{array}
$$

