Prof. A. Suciu · MTH U371–LINEAR ALGEBRA · Spring 2005 PRACTICE QUIZ 5

1. Use Gauss-Jordan elimination to find the determinant of the matrix $A = \begin{bmatrix} 1 & -1 & 2 & -2 \\ -1 & 2 & 1 & 6 \\ -2 & 6 & 10 & 33 \\ 2 & -2 & 5 & 10 \end{bmatrix}$.

- **2.** Let A and B be two 5×5 matrices, with det A = 0 and det B = -3.
 - (a) Is A invertible? Why, or why not?
 - (b) Is A orthogonal? Why, or why not?
 - (c) Is B invertible? Why, or why not?
 - (d) Is B orthogonal? Why, or why not?
 - (e) Compute det $(B \cdot A \cdot B)$.
 - (f) Compute det $(B^{\top})^3$.
 - (g) Compute $\det(2B)$.
- **3.** Find a 2×2 matrix A such that $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -5 \end{bmatrix}$ are eigenvectors of A, with eigenvalues -7 and 3, respectively.
- **4.** A 4 × 4 matrix A has eigenvalues $\lambda_1 = -3$, $\lambda_2 = -2$, $\lambda_3 = 1$, $\lambda_4 = 4$.
 - (a) What is the characteristic polynomial of A?
 - (b) Compute tr(A) and det(A).
 - (c) What are the eigenvalues of A^2 ?
 - (d) Compute $tr(A^2)$ and $det(A^2)$.
 - (e) Compute det $(A + 2I_4)$.
 - (f) Is A invertible? If yes, compute det (A^{-1}) . If not, explain why not.
 - (g) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.

5. Let
$$A = \begin{bmatrix} 4 & -7 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A.
- (b) Find a basis for each eigenspace of A.
- (c) Find a diagonal matrix D and an invertible matrix S such that $A = S \cdot D \cdot S^{-1}$.

- 6. A 2 × 2 matrix A has first row [-2 5] and eigenvalues λ₁ = -1 and λ₂ = 3.
 (a) Find A.
 - (b) What are the eigenvalues of A^{-1} ?
 - (c) Compute $det(A^{-1} + I)$, where I is the identity 2×2 matrix. Explain your result.
- 7. A 4×4 matrix has eigenvalues $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3, \lambda_4 = 4$.
 - (a) Find the eigenvalues of A^2 .
 - (b) Find the trace of A^2 .
 - (c) Find the determinant of A^2 .
- **8.** Let $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues of A.
 - (c) Find a basis for each eigenspace of A.
 - (d) Find a diagonal matrix D and an invertible matrix S such that $A = S \cdot D \cdot S^{-1}$.
- **9.** Let A be a 3×3 matrix, with eigenvalues $\lambda_1 = -2$, $\lambda_2 = 0$, $\lambda_3 = 5$.
 - (a) Compute tr(A) and det(A).
 - (b) Is A invertible? Explain your answer.
 - (c) Is A diagonalizable? Explain your answer.
 - (d) Compute $tr(A^3)$ and $det(A^3)$.

10. Let A and B be two 3×3 matrices, with det A = -2 and det B = 0.

- (a) Is A invertible? If yes, compute det (A^{-1}) . If not, say so.
- (b) Is B invertible? If yes, compute det (B^{-1}) . If not, say so.
- (c) Compute $\det(4A)$.
- (d) Compute det (A^4) .

11. Which of the following 2×2 matrices is similar to the matrix $D = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$?

$$A_{1} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 7 & 1 \\ 4 & 2 \end{bmatrix}, \quad A_{4} = \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix}, \quad A_{5} = \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}, \quad A_{6} = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}.$$