Prof. A. Suciu • MTH U371-LINEAR ALGEBRA . Spring 2005

PRACTICE QUIZ 5

1. Use Gauss-Jordan elimination to find the determinant of the matrix $A=\left[\begin{array}{cccc}1 & -1 & 2 & -2 \\ -1 & 2 & 1 & 6 \\ -2 & 6 & 10 & 33 \\ 2 & -2 & 5 & 10\end{array}\right]$.
2. Let A and B be two 5×5 matrices, with $\operatorname{det} A=0$ and $\operatorname{det} B=-3$.
(a) Is A invertible? Why, or why not?
(b) Is A orthogonal? Why, or why not?
(c) Is B invertible? Why, or why not?
(d) Is B orthogonal? Why, or why not?
(e) Compute $\operatorname{det}(B \cdot A \cdot B)$.
(f) Compute $\operatorname{det}\left(B^{\top}\right)^{3}$.
(g) Compute $\operatorname{det}(2 B)$.
3. Find a 2×2 matrix A such that $\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\left[\begin{array}{c}4 \\ -5\end{array}\right]$ are eigenvectors of A, with eigenvalues -7 and 3 , respectively.
4. A 4×4 matrix A has eigenvalues $\lambda_{1}=-3, \lambda_{2}=-2, \lambda_{3}=1, \lambda_{4}=4$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(c) What are the eigenvalues of A^{2} ?
(d) Compute $\operatorname{tr}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{2}\right)$.
(e) Compute $\operatorname{det}\left(A+2 I_{4}\right)$.
(f) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, explain why not.
(g) Is A diagonalizable? If yes, compute its diagonalization D. If not, explain why not.
5. Let $A=\left[\begin{array}{ccc}4 & -7 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find a basis for each eigenspace of A.
(c) Find a diagonal matrix D and an invertible matrix S such that $A=S \cdot D \cdot S^{-1}$.
6. A 2×2 matrix A has first row $\left[\begin{array}{ll}-2 & 5\end{array}\right]$ and eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=3$.
(a) Find A.
(b) What are the eigenvalues of A^{-1} ?
(c) Compute $\operatorname{det}\left(A^{-1}+I\right)$, where I is the identity 2×2 matrix. Explain your result.
7. A 4×4 matrix has eigenvalues $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, \lambda_{4}=4$.
(a) Find the eigenvalues of A^{2}.
(b) Find the trace of A^{2}.
(c) Find the determinant of A^{2}.
8. Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find a diagonal matrix D and an invertible matrix S such that $A=S \cdot D \cdot S^{-1}$.
9. Let A be a 3×3 matrix, with eigenvalues $\lambda_{1}=-2, \lambda_{2}=0, \lambda_{3}=5$.
(a) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(b) Is A invertible? Explain your answer.
(c) Is A diagonalizable? Explain your answer.
(d) Compute $\operatorname{tr}\left(A^{3}\right)$ and $\operatorname{det}\left(A^{3}\right)$.
10. Let A and B be two 3×3 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=0$.
(a) Is A invertible? If yes, compute $\operatorname{det}\left(A^{-1}\right)$. If not, say so.
(b) Is B invertible? If yes, compute $\operatorname{det}\left(B^{-1}\right)$. If not, say so.
(c) Compute $\operatorname{det}(4 A)$.
(d) Compute $\operatorname{det}\left(A^{4}\right)$.
11. Which of the following 2×2 matrices is similar to the matrix $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]$? $A_{1}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}4 & -1 \\ 2 & 3\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}7 & 1 \\ 4 & 2\end{array}\right], \quad A_{4}=\left[\begin{array}{cc}6 & -2 \\ 2 & 1\end{array}\right], \quad A_{5}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right], \quad A_{6}=\left[\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right]$.
